2,156 research outputs found

    Evolution towards Smart Optical Networking: Where Artificial Intelligence (AI) meets the World of Photonics

    Full text link
    Smart optical networks are the next evolution of programmable networking and programmable automation of optical networks, with human-in-the-loop network control and management. The paper discusses this evolution and the role of Artificial Intelligence (AI)

    OPTIMIZATION OF MOBILE TRANSPORT NETWORK USING INTERNET PROTOCOL/MULTI-PROTOCOL LABEL SWITCHING (IP/MPLS) APPROACH

    Get PDF
    This report focuses on a research-based project of the title ‘Optimization of Mobile Transport Network using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) Approach’. Current protocols utilized in mobile transport network are approaching a saturation point in terms of capacity to cater for a massive consumer demand growth in the network. Persistence on the conventional approaches will require much more expenditure with less encouraging revenue. Thus, much work need to be pumped into a newer and more effective alternative namely IP/MPLS. An upgrade of support node gateways and a network transmission algorithm are key elements of the project. A performance assessment of the proposed algorithm based on the Quality of Service (QoS) is also very crucial. Validation of the algorithm via the “OPNET” modeler suite software simulation results analysis is also to be carried out to define the best gateway for mapping process. A robust and flexible IP/MPLS approach will consequently results in a better network performance thus providing more opportunities for a more dynamic network growth for the benefit of mankind. The resulting approach can be further improved via continuous research and development (R&D) to produce a more reliable and resilient protocol. IP/MPLS will surely provide the vital boost to usher in the next generation of networking

    The communication revolution : new perspectives on photonics

    Get PDF

    The communication revolution : new perspectives on photonics

    Get PDF

    Light work(s)

    Get PDF

    Quantum Metropolitan Optical Network based on Wavelength Division Multiplexing

    Get PDF
    Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.Comment: 23 pages, 8 figure

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    a European community view

    Get PDF
    Within the last two decades, quantum technologies (QT) have made tremendous progress, moving from Nobel Prize award-winning experiments on quantum physics (1997: Chu, Cohen-Tanoudji, Phillips; 2001: Cornell, Ketterle, Wieman; 2005: Hall, Hänsch-, Glauber; 2012: Haroche, Wineland) into a cross-disciplinary field of applied research. Technologies are being developed now that explicitly address individual quantum states and make use of the 'strange' quantum properties, such as superposition and entanglement. The field comprises four domains: quantum communication, where individual or entangled photons are used to transmit data in a provably secure way; quantum simulation, where well-controlled quantum systems are used to reproduce the behaviour of other, less accessible quantum systems; quantum computation, which employs quantum effects to dramatically speed up certain calculations, such as number factoring; and quantum sensing and metrology, where the high sensitivity of coherent quantum systems to external perturbations is exploited to enhance the performance of measurements of physical quantities. In Europe, the QT community has profited from several EC funded coordination projects, which, among other things, have coordinated the creation of a 150-page QT Roadmap (http://qurope.eu/h2020/qtflagship/roadmap2016). This article presents an updated summary of this roadmap
    corecore