24,163 research outputs found

    Integrated Silicon Photonics for High-Speed Quantum Key Distribution

    Get PDF
    Integrated photonics offers great potential for quantum communication devices in terms of complexity, robustness and scalability. Silicon photonics in particular is a leading platform for quantum photonic technologies, with further benefits of miniaturisation, cost-effective device manufacture and compatibility with CMOS microelectronics. However, effective techniques for high-speed modulation of quantum states in standard silicon photonic platforms have been limited. Here we overcome this limitation and demonstrate high-speed low-error quantum key distribution modulation with silicon photonic devices combining slow thermo-optic DC biases and fast (10~GHz bandwidth) carrier-depletion modulation. The ability to scale up these integrated circuits and incorporate microelectronics opens the way to new and advanced integrated quantum communication technologies and larger adoption of quantum-secured communications

    Ion-Exchanged Glass Waveguides with Low Birefringence for a Broad Range of Waveguide Widths

    Get PDF
    Optical communications networks require integrated photonic components with negligible polarization dependence, which typically means that the waveguides must feature very low birefringence. Recent studies have shown that waveguides with low birefringence can be obtained, e.g., by use of silica-on-silicon waveguides or buried ion-exchanged glass waveguides. However, many integrated photonic circuits consist of waveguides with varying widths. Therefore low birefringence is consequently required for waveguides having different widths. This is a difficult task for most waveguide fabrication technologies. We present experimental results on waveguide birefringence for buried silver–sodium ion-exchanged glass waveguides. We show that the waveguide birefringence of the order of 106 for waveguide mask opening widths ranging from 2 to 10 μm can be obtained by postprocessing the sample through annealing at an elevated temperature. The measured values are in agreement with the values calculated with our modeling software for ion-exchanged glass waveguides. This unique feature of ion-exchanged waveguides may be of significant importance in a wide variety of integrated photonic circuits requiring polarization independent operation

    Generation of Complex Quantum States Via Integrated Frequency Combs

    Get PDF
    The generation of optical quantum states on an integrated platform will enable low cost and accessible advances for quantum technologies such as secure communications and quantum computation. We demonstrate that integrated quantum frequency combs (based on high-Q microring resonators made from a CMOS-compatible, high refractive-index glass platform) can enable, among others, the generation of heralded single photons, cross-polarized photon pairs, as well as bi- and multi-photon entangled qubit states over a broad frequency comb covering the S, C, L telecommunications band, constituting an important cornerstone for future practical implementations of photonic quantum information processing

    Nanophotonic soliton-based microwave synthesizers

    Full text link
    Microwave photonic technologies, which upshift the carrier into the optical domain to facilitate the generation and processing of ultrawide-band electronic signals at vastly reduced fractional bandwidths, have the potential to achieve superior performance compared to conventional electronics for targeted functions. For microwave photonic applications such as filters, coherent radars, subnoise detection, optical communications and low-noise microwave generation, frequency combs are key building blocks. By virtue of soliton microcombs, frequency combs can now be built using CMOS compatible photonic integrated circuits, operated with low power and noise, and have already been employed in system-level demonstrations. Yet, currently developed photonic integrated microcombs all operate with repetition rates significantly beyond those that conventional electronics can detect and process, compounding their use in microwave photonics. Here we demonstrate integrated soliton microcombs operating in two widely employed microwave bands, X- and K-band. These devices can produce more than 300 comb lines within the 3-dB-bandwidth, and generate microwave signals featuring phase noise levels below 105 dBc/Hz (140 dBc/Hz) at 10 kHz (1 MHz) offset frequency, comparable to modern electronic microwave synthesizers. In addition, the soliton pulse stream can be injection-locked to a microwave signal, enabling actuator-free repetition rate stabilization, tuning and microwave spectral purification, at power levels compatible with silicon-based lasers (<150 mW). Our results establish photonic integrated soliton microcombs as viable integrated low-noise microwave synthesizers. Further, the low repetition rates are critical for future dense WDM channel generation schemes, and can significantly reduce the system complexity of photonic integrated frequency synthesizers and atomic clocks

    Modeling Human Performance on Statistical Word Segmentation Tasks

    Get PDF
    Harnessing the orbital angular momentum (OAM) of light is an appealing approach to developing photonic technologies for future applications in optical communications and high-dimensional quantum key distribution (QKD) systems. An outstanding challenge to the widespread uptake of the OAM resource is its efficient generation. In this work we design a new device that can directly emit an OAM-carrying light beam from a low-cost semiconductor laser. By fabricating micro-scale spiral phase plates within the aperture of a vertical-cavity surface-emitting laser (VCSEL), the linearly polarized Gaussian beam emitted by the VCSEL is converted into a beam carrying specific OAM modes and their superposition states, with high efficiency and high beam quality. This new approach to OAM generation may be particularly useful in the field of OAM-based optical and quantum communications, especially for short-reach data interconnects and QKD

    European Union Acts project MIDAS: objectives and progress to date

    No full text
    Introduction to the ACTS program: Advanced Communications and Technology and Services, known simply as ACTS, is one of the specific programmes of the "Fourth Framework Programme of European Community activities in the field of research and technological development and demonstration (1994-1998)". It provides the main focus of the European Unions research effort to accelerate deployment of advanced communications infrastructures and services, and is complemented by extensive European research in the areas of information technology and telematics. The stated objectives of ACTS are to "develop advanced communication systems and services for economic development and social cohesion within Europe, taking account of the rapid evolution of technologies, the changing regulatory situation and opportunities for development of advanced transeuropean networks and services". Within ACTS, the emphasis of the work has shifted from the exploration of fundamental concepts and detailed system engineering, as it had been in earlier programs such as RACE (Research and development in Advanced Communication technologies for Europe), to issues relating to implementation of advanced systems and generic services, and applications which demonstrate the potential use of advanced communications in Europe. A key feature of the ACTS program is that the research be undertaken in the context of real-world trials. Work within the program is divided into six technical areas: Interactive digital multimedia services, photonic technologies, high speed networking, mobility and personal communication networks, intelligence in networks and services and quality, safety and security of communication systems and services. The total EU budget for the ACTS program is approximately 670 MECU, covering around 160 projects, with over 1000 individual organisations participating within the program, thereby illustrating the scale of the activities. MIDAS is one of five projects in the technical area of photonic technologies concerned with high speed transmission, the others being ESTHER, UPGRADE, HIGHWAY and SPEED, each concerned with various aspects or approaches to the development of 40 GBit/s transmission systems within the European arena. A full list of project descriptions and objectives, as well as those of the ACTS program as a whole, are to be found in Ref [1]. The MIDAS consortium consists of the following organisations: Chalmers University of Technology (Sweden), CSELT (Italy), Thomson LCR (France), United Monolithic Semiconductor (France), Telia (Sweden), Kings College London (UK), University of Athens (Greece), ORC University of Southampton (UK). The project started in September 1995 and is currently scheduled to finish in September 1998

    Plasmonics for emerging quantum technologies

    Get PDF
    Expanding the frontiers of information processing technologies and, in particular, computing with ever increasing speed and capacity has long been recognized an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the Universe, while optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data and the ever increasing demands of miniaturization and energy saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising and fundamental research directions and, indeed, the only one that enables ultimate miniaturization of photonic components for quantum optics when being taken to extreme limits in light-matter interactions.Comment: To appear in Nanophotonic
    • …
    corecore