27 research outputs found

    SEED LOCALIZATION IN IMAGE-GUIDED PROSTATE BRACHYTHERAPY INTRAOPERATIVE DOSIMETRY SYSTEMS

    Get PDF
    Prostate cancer is the most common cancer among men in the United States. Many treatments are available, but prostate brachytherapy is acknowledged as a standard treatment for patients with localized cancer. Prostate brachytherapy is a minimally invasive surgery involving the permanent implantation of approximately 100 grain-sized radioactive seeds into the prostate. While effective, contemporary practice of brachytherapy is suboptimal because it spreads the stages of planning, implant, and dosimetry over several weeks. Although brachytherapy is now moving towards intraoperative treatment planning (ITP) which integrates all three stages into a single day in the operating room,the American Brachytherapy Society states, “the major current limitation of ITP is the inability to localize the seeds in relation to the prostate.” While the procedure is traditionally guided by transrectal ultrasound (TRUS), poor image quality prevents TRUS from accurately localizing seeds to compute dosimetry intraoperatively. Alternative methods exist, but are generally impractical to implement in clinics worldwide. The subject of this dissertation is the development of two intraoperative dosimetry systems to practically solve the problem of seed localization in ITP. The first system fuses TRUS with X-ray fluoroscopy using the ubiquitous non-isocentric mobile C-arm.The primary contributions of this dissertation include an automatic fiducial and seed segmentation algorithm for fluoroscopic images, as well as a next generation intraoperative dosimetry system based on a fiducial with seed-like markers. Results from over 30 patients prove that both contributions are significant for localizing seeds with high accuracy and demonstrate the capability of detecting cold spots. The second intraoperative dosimetry system is based on photoacoustic imaging, and uses the already implemented TRUS probe to detect ultrasonic waves converted from electromagnetic waves generated by a laser. The primary contributions of this dissertation therefore also include a prototype benchtop photoacoustic system and an improved clinical version usable in the operating room. Results from gelatin phantoms, an ex vivo dog prostate, and an in vivo dog study reveal that multiple seeds are clearly visible with high contrast using photoacoustic imaging at clinically safe laser energies.Together, both systems significantly progress the latest technologies to provide optimal care to patients through ITP

    Cylindrical illumination with angular coupling for whole-prostate photoacoustic tomography

    Get PDF
    Current diagnosis of prostate cancer relies on histological analysis of tissue samples acquired by biopsy, which could benefit from real-time identification of suspicious lesions. Photoacoustic tomography has the potential to provide real-time targets for prostate biopsy guidance with chemical selectivity, but light delivered from the rectal cavity has been unable to penetrate to the anterior prostate. To overcome this barrier, a urethral device with cylindrical illumination is developed for whole-prostate imaging, and its performance as a function of angular light coupling is evaluated with a prostate-mimicking phantom

    Gold nanoparticles meet medical radionuclides

    Get PDF
    Thanks to their unique optical and physicochemical properties, gold nanoparticles have gained increased interest as radiosensitizing, photothermal therapy and optical imaging agents to enhance the effectiveness of cancer detection and therapy. Furthermore, their ability to carry multiple medically relevant radionuclides broadens their use to nuclear medicine SPECT and PET imaging as well as targeted radionuclide therapy. In this review, we discuss the radiolabeling process of gold nanoparticles and their use in (multimodal) nuclear medicine imaging to better understand their specific distribution, uptake and retention in different in vivo cancer models. In addition, radiolabeled gold nanoparticles enable image-guided therapy is reviewed aswell as the enhancement of targeted radionuclide therapy and nanobrachytherapy through an increased dose deposition and radiosensitization, as demonstrated by multiple Monte Carlo studies and experimental in vitro and in vivo studies. (C) 2021 The Authors. Published by Elsevier Inc

    Automatic Search for Photoacoustic Marker Using Automated Transrectal Ultrasound

    Full text link
    Real-time transrectal ultrasound (TRUS) image guidance during robot-assisted laparoscopic radical prostatectomy has the potential to enhance surgery outcomes. Whether conventional or photoacoustic TRUS is used, the robotic system and the TRUS must be registered to each other. Accurate registration can be performed using photoacoustic (PA markers). However, this requires a manual search by an assistant [19]. This paper introduces the first automatic search for PA markers using a transrectal ultrasound robot. This effectively reduces the challenges associated with the da Vinci-TRUS registration. This paper investigated the performance of three search algorithms in simulation and experiment: Weighted Average (WA), Golden Section Search (GSS), and Ternary Search (TS). For validation, a surgical prostate scenario was mimicked and various ex vivo tissues were tested. As a result, the WA algorithm can achieve 0.53 degree average error after 9 data acquisitions, while the TS and GSS algorithm can achieve 0.29 degree and 0.48 degree average errors after 28 data acquisitions.Comment: 13 pages, 9 figure
    corecore