2,092 research outputs found

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table

    Moarabisque: the essence of Arabia : a motion graphics piece that promotes the diverse Saudi Arabian arts and culture

    Get PDF
    Moarabisque: The essence of Arabia is an Arabian custom designed motion graphics series . This Series is inspired by the diverse geography, architecture, arts, and culture of the Arabian Peninsula. These series are merged together as a cohesive motion graphics piece that visually reflects and promotes the varied Arabian culture through arts, architecture, music, and Islamic iconography. The final motion graphics video will introduce a series of visual icons that are of vital importance to religious and cultural values of Muslims; especially the Arabic nation. These icons delineate the characteristics of the Arabian culture; an Islamic civilized culture that emerged from the Arabian Desert and is visually rich in arts, architecture, and heritage. My thesis is an endeavor to implement motion graphics as an effectual multimedia tool. This tool will visually reflect and promote the inimitable culture and distinctive art of Saudi Arabia. The thesis comprises four distinct motion graphics videos. These videos will visually showcase various aspects and sceneries of the Saudi architectural heritage, artistic aura, and cultural ambiance to the intended audience. This will help them establish a strong sense of visual awareness towards not only my culture but also the aesthetic values surrounding it

    Feature-rich distance-based terrain synthesis

    Get PDF
    This thesis describes a novel terrain synthesis method based on distances in a weighted graph. The method begins with a regular lattice with arbitrary edge weights; heights are determined by path cost from a set of generator nodes. The shapes of individual terrain features, such as mountains, hills, and craters, are specified by a monotonically decreasing profile describing the cross-sectional shape of a feature, while the locations of features in the terrain are specified by placing the generators. Pathing places ridges whose initial location have a dendritic shape. The method is robust and easy to control, making it possible to create pareidolia effects. It can produce a wide range of realistic synthetic terrains such as mountain ranges, craters, faults, cinder cones, and hills. The algorithm incorporates random graph edge weights, permits the inclusion of multiple topography profiles, and allows precise control over placement of terrain features and their heights. These properties all allow the artist to create highly heterogeneous terrains that compare quite favorably to existing methods

    Active microwave remote sensing of earth/land, chapter 2

    Get PDF
    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained

    Plugged-in: 40 years of digital imaging

    Get PDF
    To create an interactive piece that will provide to the user a feel for the rapid development of digital imaging, the key players involved and its impact on the way we create visual media today. This interactive presentation will seek to establish how this new medium emerged from the collaboration of many creative minds in the scientific and art worlds

    Roving vehicle motion control Quarterly report, 1 Mar. - 31 May 1967

    Get PDF
    System and subsystem requirements for remote control of roving space vehicle motio

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Analytical Modeling and Performance Assessment of Micropulse Photon-counting Lidar System

    Get PDF
    The melting of polar ice sheets and evidence of global warming continue to remain prominent research interests among scientists. To better understand global volumetric change of ice sheets, NASA intends to launch Ice, Cloud and land Elevation Satellite-2 (ICESat-2) in 2017. ICESat-2 employs a high frequency photon-counting laser altimeter, which will provide significantly greater spatial sampling. However, the combined effects of sub-beam complex surfaces, as well as system effects on returning photon distribution have not been systematically studied. To better understand the effects of various system attributes and to help improve the theory behind lidar sensing of complex surfaces, an analytical model using a first principles 3-D Monte Carlo approach is developed to predict system performance. Based on the latest ICESat-2 design, this analytical model simulates photons which propagate from the laser transmitter to the scene, and reflected to the detector model. A radiometric model is also applied in the synthetic scene. Such an approach allows the study of surface elevation retrieval accuracy for landscapes, as well as surface reflectivities. It was found that ICESat-2 will have a higher precision on a smoother surface, and a surface with smaller diffuse albedo will on average result in smaller bias. Furthermore, an adaptive density-based algorithm is developed to detect the surface returns without any geometrical knowledge. This proposed approach is implemented using the aforementioned simulated data set, as well as airborne laser altimeter measurement. Qualitative and quantitative results are presented to show that smaller laser footprint, smoother surface, and lower noise rate will improve accuracy of ground height estimation. Meanwhile, reasonable detection accuracy can also be achieved in estimating both ground and canopy returns for data generated using Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. This proposed approach was found to be generally applicable for surface and canopy finding from photon-counting laser altimeter data
    • …
    corecore