723 research outputs found

    A new method to determine multi-angular reflectance factor from lightweight multispectral cameras with sky sensor in a target-less workflow applicable to UAV

    Full text link
    A new physically based method to estimate hemispheric-directional reflectance factor (HDRF) from lightweight multispectral cameras that have a downwelling irradiance sensor is presented. It combines radiometry with photogrammetric computer vision to derive geometrically and radiometrically accurate data purely from the images, without requiring reflectance targets or any other additional information apart from the imagery. The sky sensor orientation is initially computed using photogrammetric computer vision and revised with a non-linear regression comprising radiometric and photogrammetry-derived information. It works for both clear sky and overcast conditions. A ground-based test acquisition of a Spectralon target observed from different viewing directions and with different sun positions using a typical multispectral sensor configuration for clear sky and overcast showed that both the overall value and the directionality of the reflectance factor as reported in the literature were well retrieved. An RMSE of 3% for clear sky and up to 5% for overcast sky was observed

    Combined MASS-DIMM instrument for atmospheric turbulence studies

    Full text link
    Several site-testing programs and observatories currently use combined MASS-DIMM instruments for monitoring parameters of optical turbulence. The instrument is described here. After a short recall of the measured quantities and operational principles, the optics and electronics of MASS-DIMM, interfacing to telescopes and detectors, and operation are covered in some detail. Particular attention is given to the correct measurement and control of instrumental parameters to ensure valid and well-calibrated data, to the data quality and filtering. Examples of MASS-DIMM data are given, followed by the list of present and future applications.Comment: Accepted by MNRAS, 11 pages, 8 figure

    Image Processing in Dense Forest Areas using Unmanned Aerial System (UAS)

    Get PDF
    Description: A detailed workflow using Structure from Motion (SfM) techniques for processing high-resolution Unmanned Aerial System (UAS) NIR and RGB imagery in a dense forest environment where obtaining control points is difficult due to limited access and safety issues. Abstract: Imagery collected via Unmanned Aerial System (UAS) platforms has become popular in recent years due to improvements in a Digital Single-Lens Reflex (DSLR) camera (centimeter and sub-centimeter), lower operation costs as compared to human piloted aircraft, and the ability to collect data over areas with limited ground access. Many different application (e.g., forestry, agriculture, geology, archaeology) are already using and utilizing the advantages of UAS data. Although, there are numerous UAS image processing workflows, for each application the approach can be different. In this study, we developed a processing workflow of UAS imagery collected in a dense forest (e.g., coniferous/deciduous forest and contiguous wetlands) area allowing users to process large datasets with acceptable mosaicking and georeferencing errors. Imagery was acquired with near-infrared (NIR) and red, green, blue (RGB) cameras with no ground control points. Image quality of two different UAS collection platforms were observed. Agisoft Metashape, a photogrammetric suite, which uses SfM (Structure from Motion) techniques, was used to process the imagery. The results showed that an UAS having a consumer grade Global Navigation Satellite System (GNSS) onboard had better image alignment than an UAS with lower quality GNSS

    Procedures for Correcting Digital Camera Imagery Acquired by the AggieAir Remote Sensing Platform

    Get PDF
    Developments in sensor technologies have made consumer-grade digital cameras one of the more recent tools in remote sensing applications. Consumer-grade digital cameras have been the imaging sensor of choice by researchers due to their small size, light weight, limited power requirements, and their potential to store hundreds of images (Hardin 2011). Several studies have focused on the use of digital cameras and their efficacy in remote sensing applications. For satellite and airborne multispectral imaging systems, there is a well established radiometric processing approach. However, radiometric processing lines for digital cameras are currently being researched. The goal of this report is to describe an absolute method of radiometric normalization that converts digital numbers output by the camera to reflectance values that can be used for remote sensing applications. This process is used at the AggieAir Flying Circus (AAFC), a service center at the Utah Water Research Laboratory at Utah State University. The AAFC is a research unit that specializes in the acquisition, processing, and interpretation of aerial imagery obtained with the AggieAirTM platform. AggieAir is an autonomous, unmanned aerial vehicle system that captures multi-temporal and multispectral high resolution imagery for the production of orthorectified mosaics. The procedure used by the AAFC is based on methods adapted from Miura and Huete (2009), Crowther (1992) and Neale and Crowther (1994) for imagery acquired with Canon PowerShot SX100 cameras. Absolute normalization requires ground measurements at the time the imagery is acquired. In this study, a barium sulfate reflectance panel with absolute reflectance is used. The procedure was demonstrated using imagery captured from a wetland near Pleasant Grove, Utah, that is managed by the Utah Department of Transportation

    PIRATE: A Remotely-Operable Telescope Facility for Research and Education

    Full text link
    We introduce PIRATE, a new remotely-operable telescope facility for use in research and education, constructed from 'off-the-shelf' hardware, operated by The Open University. We focus on the PIRATE Mark 1 operational phase where PIRATE was equipped with a widely- used 0.35m Schmidt-Cassegrain system (now replaced with a 0.425m corrected Dall Kirkham astrograph). Situated at the Observatori Astronomic de Mallorca, PIRATE is currently used to follow up potential transiting extrasolar planet candidates produced by the SuperWASP North experiment, as well as to hunt for novae in M31 and other nearby galaxies. It is operated by a mixture of commercially available software and proprietary software developed at the Open University. We discuss problems associated with performing precision time series photometry when using a German Equatorial Mount, investigating the overall performance of such 'off-the-shelf' solutions in both research and teaching applications. We conclude that PIRATE is a cost-effective research facility, and also provides exciting prospects for undergraduate astronomy. PIRATE has broken new ground in offering practical astronomy education to distance-learning students in their own homes.Comment: Accepted for publication in PASP. 14 pages, 11 figure

    ERTS-1 Virgin Islands experiment 589: Determine boundaries of ERTS and aircraft data within which useful water quality information can be obtained

    Get PDF
    The author has identified the following significant results. The boundaries of application of ERTS-1 and aircraft data are established for St. Thomas harbor within which useful water quality information can be obtained. In situ physical, chemical, and biological water quality and benthic data were collected. Moored current meters were employed. Optical measurements of solar irradiance, color test panel radiance and water absorption were taken. Procedures for correlating in situ optical, biological, and chemical data with underflight aircraft I2S data and ERTS-1 MSS scanner data are presented. Comparison of bulk and precision CCT computer printout data for this application is made, and a simple method for geometrically locating bulk data individual pixels based on land-water interface is described. ERTS spacecraft data and I2S aircraft imagery are correlated with optical in situ measurements of the harbor water, with the aircraft green photographic and ERTS-1 MSS-4 bands being the most useful. The biological pigments correlate inversely with the optical data for inshore areas and directly further seaward. Automated computer data processing facilitated analysis

    Fully automatic analysis of archival aerial images current status and challenges

    Get PDF
    International audienceArchival aerial images are a unique and relatively unexplored means to generate detailed land-cover information in 3D over the past 100 years. Many long-term environmental monitoring studies can be based on this type of image series. Such data provide a relatively dense temporal sampling of the territories with very high spatial resolution. Furthermore, photogrammetric workflows exist in order to both produce orthoimages and Digital Surface Models, with reasonable interactive actions. However, today, there is no fully automatic pipeline for generating such kind of data. This paper presents the main avenues of research in order to develop such workflow, starting from registration and radiometric issues up to land-cover classification challenges

    Hyperspectral reflectance measurements from UAS under intermittent clouds: Correcting irradiance measurements for sensor tilt

    Get PDF
    One great advantage of optical hyperspectral remote sensing from unmanned aerial systems (UAS) compared to satellite missions is the possibility to fly and collect data below clouds. The most typical scenario is flying below intermittent clouds and under turbulent conditions, which causes tilting of the platform. This study aims to advance hyperspectral imaging from UAS in most weather conditions by addressing two challenges: (i) the radiometric and spectral calibrations of miniaturized hyperspectral sensors; and (ii) tilting effects on measured downwelling irradiance. We developed a novel method to correct the downwelling irradiance data for tilting effects. It uses a hybrid approach of minimizing measured irradiance variations for constant irradiance periods and spectral unmixing, to calculate the spectral diffuse irradiance fraction for all irradiance measurements within a flight. It only requires the platform's attitude data and a standard incoming light sensor. We demonstrated the method at the Palo Verde National Park wetlands in Costa Rica, a highly biodiverse area. Our results showed that the downwelling irradiance correction method reduced systematic shifts caused by a change in flight direction of the UAS, by 87% and achieving a deviation of 2.78% relative to a on ground reference in terms of broadband irradiance. High frequency (< 3 s) irradiance variations caused by high-frequency tilting movements of the UAS were reduced by up to 71%. Our complete spectral and radiometric calibration and irradiance correction can significantly remove typical striped illumination artifacts in the surface reflectance-factor map product. The possibility of collecting precise hyperspectral reflectance-factor data from UAS under varying cloud cover makes it more operational for environmental monitoring or precision agriculture applications, being an important step in advancing hyperspectral imaging from UAS.Innovation Fund Denmark/[7048-00001B]/IFD/DinamarcaAgricultural Water Innovations in the Tropics/[]/AgWIT/CanadáUniversidad de Costa Rica/[805-C0-603]/UCR/Costa RicaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic
    • …
    corecore