38 research outputs found

    Parameterized Synthetic Image Data Set for Fisheye Lens

    Full text link
    Based on different projection geometry, a fisheye image can be presented as a parameterized non-rectilinear image. Deep neural networks(DNN) is one of the solutions to extract parameters for fisheye image feature description. However, a large number of images are required for training a reasonable prediction model for DNN. In this paper, we propose to extend the scale of the training dataset using parameterized synthetic images. It effectively boosts the diversity of images and avoids the data scale limitation. To simulate different viewing angles and distances, we adopt controllable parameterized projection processes on transformation. The reliability of the proposed method is proved by testing images captured by our fisheye camera. The synthetic dataset is the first dataset that is able to extend to a big scale labeled fisheye image dataset. It is accessible via: http://www2.leuphana.de/misl/fisheye-data-set/.Comment: 2018 5th International Conference on Information Science and Control Engineerin

    An Enhanced Deep Convolutional Neural Network for Classifying Indian Classical Dance Forms

    Get PDF
    Indian classical dance (ICD) classification is an interesting subject because of its complex body posture. It provides a stage to experiment with various computer vision and deep learning concepts. With a change in learning styles, automated teaching solutions have become inevitable in every field, from traditional to online platforms. Additionally, ICD forms an essential part of a rich cultural and intangible heritage, which at all costs must be modernized and preserved. In this paper, we have attempted an exhaustive classification of dance forms into eight categories. For classification, we have proposed a deep convolutional neural network (DCNN) model using ResNet50, which outperforms various state-of-the-art approaches.Additionally, to our surprise, the proposed model also surpassed a few recently published works in terms of performance evaluation. The input to the proposed network is initially pre-processed using image thresholding and sampling. Next, a truncated DCNN based on ResNet50 is applied to the pre-processed samples. The proposed model gives an accuracy score of 0.911

    Computational Aesthetics and Image Enhancements using Deep Neural Networks

    Get PDF
    Imaging devices have become ubiquitous in modern life, and many of us capture an increasing number of images every day. When we choose to share or store some of these images, our primary selection criterion is to choose the most visually pleasing ones. Yet, quantifying visual pleasantness is a challenge, as image aesthetics not only correlate with low-level image quality, such as contrast, but also high-level visual processes, like composition and context. For most users, a considerable amount of manual effort and/or professional knowledge is required to get aesthetically pleasing images. Developing automatic solutions thus benefits a large community. This thesis proposes several computational approaches to help users obtain the desired images. The first technique aims at automatically measuring the aesthetics quality, which benefits the users in selecting and ranking images. We form the aesthetics prediction problem as a regression task and train a deep neural network on a large image aesthetics dataset. The unbalanced distribution of aesthetics scores in the training set can result in bias of the trained model towards certain aesthetics levels. Therefore, we propose to add sample weights during training to overcome such bias. Moreover, we build a loss function on the histograms of user labels, thus enabling the network to predict not only the average aesthetics quality but also the difficulty of such predictions. Extensive experiments demonstrate that our model outperforms the previous state-of-the-art by a notable margin. Additionally, we propose an image cropping technique that automatically outputs aesthetically pleasing crops. Given an input image and a certain template, we first extract a sufficient amount of candidate crops. These crops are later ranked according to the scores predicted by the pre-trained aesthetics network, after which the best crop is output to the users. We conduct psychophysical experiments to validate the performance. We further present a keyword-based image color re-rendering algorithm. For this task, the colors in the input image are modified to be visually more appealing according to the keyword specified by users. Our algorithm applies local color re-rendering operations to achieve this goal. A novel weakly-supervised semantic segmentation algorithm is developed to locate the keyword-related regions where the color re-rendering operations are applied. The color re-rendering process benefits from the segmentation network in two aspects. Firstly, we achieve more accurate correlation measurements between keywords and color characteristics, contributing to better re-render rendering results of the colors. Secondly, the artifacts caused by the color re-rendering operations are significantly reduced. To avoid the need of keywords when enhancing image aesthetics, we explore generative adversarial networks (GANs) for automatic image enhancement. GANs are known for directly learning the transformations between images from the training data. To learn the image enhancement operations, we train the GANs on an aesthetics dataset with three different losses combined. The first two are standard generative losses that enforce the generated images to be natural and content-wise similar to the input images. We propose a third aesthetics loss that aims at improving the aesthetics quality of the generated images. Overall, the three losses together direct the GANs to apply appropriate image enhancement operations

    Indian Classical Dance Action Identification and Classification with Convolutional Neural Networks

    Get PDF
    Extracting and recognizing complex human movements from unconstrained online/offline video sequence is a challenging task in computer vision. This paper proposes the classification of Indian classical dance actions using a powerful artificial intelligence tool: convolutional neural networks (CNN). In this work, human action recognition on Indian classical dance videos is performed on recordings from both offline (controlled recording) and online (live performances, YouTube) data. The offline data is created with ten different subjects performing 200 familiar dance mudras/poses from different Indian classical dance forms under various background environments. The online dance data is collected from YouTube for ten different subjects. Each dance pose is occupied for 60 frames or images in a video in both the cases. CNN training is performed with 8 different sample sizes, each consisting of multiple sets of subjects. The remaining 2 samples are used for testing the trained CNN. Different CNN architectures were designed and tested with our data to obtain a better accuracy in recognition. We achieved a 93.33% recognition rate compared to other classifier models reported on the same dataset

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants
    corecore