892 research outputs found

    Lipreading with Long Short-Term Memory

    Full text link
    Lipreading, i.e. speech recognition from visual-only recordings of a speaker's face, can be achieved with a processing pipeline based solely on neural networks, yielding significantly better accuracy than conventional methods. Feed-forward and recurrent neural network layers (namely Long Short-Term Memory; LSTM) are stacked to form a single structure which is trained by back-propagating error gradients through all the layers. The performance of such a stacked network was experimentally evaluated and compared to a standard Support Vector Machine classifier using conventional computer vision features (Eigenlips and Histograms of Oriented Gradients). The evaluation was performed on data from 19 speakers of the publicly available GRID corpus. With 51 different words to classify, we report a best word accuracy on held-out evaluation speakers of 79.6% using the end-to-end neural network-based solution (11.6% improvement over the best feature-based solution evaluated).Comment: Accepted for publication at ICASSP 201

    Towards a Multimodal Silent Speech Interface for European Portuguese

    Get PDF
    Automatic Speech Recognition (ASR) in the presence of environmental noise is still a hard problem to tackle in speech science (Ng et al., 2000). Another problem well described in the literature is the one concerned with elderly speech production. Studies (Helfrich, 1979) have shown evidence of a slower speech rate, more breaks, more speech errors and a humbled volume of speech, when comparing elderly with teenagers or adults speech, on an acoustic level. This fact makes elderly speech hard to recognize, using currently available stochastic based ASR technology. To tackle these two problems in the context of ASR for HumanComputer Interaction, a novel Silent Speech Interface (SSI) in European Portuguese (EP) is envisioned.info:eu-repo/semantics/acceptedVersio

    Towards a Practical Silent Speech Interface Based on Vocal Tract Imaging

    Get PDF
    Intégralité des actes de cette conférence disponible au lien suivant: http://www.issp2011.uqam.ca/upload/files/proceedings.pdfInternational audienceThe paper describes advances in the development of an ultrasound silent speech interface for use in silent communications applications or as a speaking aid for persons who have undergone a laryngectomy. It reports some first steps towards making such a device lightweight, portable, interactive, and practical to use. Simple experimental tests of an interactive silent speech interface for everyday applications are described. Possible future improvements including extension to continuous speech and real time operation are discussed.Cet article décrit les avancements dans le développement d'une interface ultrasonore de parole silencieuse, pour des applications en communication silencieuse ou comme une aide pour les personnes laryngectomisées. Nous rapportons les premiers pas pour réaliser une telle interface portable, interactive, et pratique à utiliser. De simples tests expérimentaux de cette interface pour des applications quotidiennes sont décrits. Des améliorations futures possibles incluant l'extension à la parole continue et aux traitements en temps réels sont discutées

    Silent versus modal multi-speaker speech recognition from ultrasound and video

    Get PDF
    We investigate multi-speaker speech recognition from ultrasound images of the tongue and video images of the lips. We train our systems on imaging data from modal speech, and evaluate on matched test sets of two speaking modes: silent and modal speech. We observe that silent speech recognition from imaging data underperforms compared to modal speech recognition, likely due to a speaking-mode mismatch between training and testing. We improve silent speech recognition performance using techniques that address the domain mismatch, such as fMLLR and unsupervised model adaptation. We also analyse the properties of silent and modal speech in terms of utterance duration and the size of the articulatory space. To estimate the articulatory space, we compute the convex hull of tongue splines, extracted from ultrasound tongue images. Overall, we observe that the duration of silent speech is longer than that of modal speech, and that silent speech covers a smaller articulatory space than modal speech. Although these two properties are statistically significant across speaking modes, they do not directly correlate with word error rates from speech recognition.Comment: 5 pages, 5 figures, Submitted to Interspeech 202

    A silent speech system based on permanent magnet articulography and direct synthesis

    Get PDF
    In this paper we present a silent speech interface (SSI) system aimed at restoring speech communication for individuals who have lost their voice due to laryngectomy or diseases affecting the vocal folds. In the proposed system, articulatory data captured from the lips and tongue using permanent magnet articulography (PMA) are converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings of PMA and audio signals acquired before laryngectomy. The transformation is represented using a mixture of factor analysers, which is a generative model that allows us to efficiently model non-linear behaviour and perform dimensionality reduction at the same time. The learned transformation is then deployed during normal usage of the SSI to restore the acoustic speech signal associated with the captured PMA data. The proposed system is evaluated using objective quality measures and listening tests on two databases containing PMA and audio recordings for normal speakers. Results show that it is possible to reconstruct speech from articulator movements captured by an unobtrusive technique without an intermediate recognition step. The SSI is capable of producing speech of sufficient intelligibility and naturalness that the speaker is clearly identifiable, but problems remain in scaling up the process to function consistently for phonetically rich vocabularies

    Speaker-Independent Classification of Phonetic Segments from Raw Ultrasound in Child Speech

    Get PDF
    Ultrasound tongue imaging (UTI) provides a convenient way to visualize the vocal tract during speech production. UTI is increasingly being used for speech therapy, making it important to develop automatic methods to assist various time-consuming manual tasks currently performed by speech therapists. A key challenge is to generalize the automatic processing of ultrasound tongue images to previously unseen speakers. In this work, we investigate the classification of phonetic segments (tongue shapes) from raw ultrasound recordings under several training scenarios: speaker-dependent, multi-speaker, speaker-independent, and speaker-adapted. We observe that models underperform when applied to data from speakers not seen at training time. However, when provided with minimal additional speaker information, such as the mean ultrasound frame, the models generalize better to unseen speakers.Comment: 5 pages, 4 figures, published in ICASSP2019 (IEEE International Conference on Acoustics, Speech and Signal Processing, 2019
    corecore