178 research outputs found

    61st Annual Rocky Mountain Conference on Magnetic Resonance

    Get PDF
    Final program, abstracts, and information about the 61st annual meeting of the Rocky Mountain Conference on Magnetic Resonance, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Copper Mountain, Colorado, July 25-29, 2022

    Implications of reactive oxygen species (ROS) in initiating chemical reactions

    Get PDF
    This thesis presents a series of scientific studies exploring the initiation of various chemical reactions with reactive oxygen species (ROS), mainly singlet oxygen. These studies have revealed new mechanistic insights in environmental, industrial and biological systems, have described the associated set of reactions, have illustrated the detection of new radicals i.e., environmentally persistent free radicals (EPFR), and have provided a new insight explaining the spontaneous fire in coal mines. Comprehensive experimental and quantum-mechanical calculations afforded the investigation of oxidation reactions of singlet oxygen with wastewater organic contaminants, for example, the photodegradation of Phenol and Aniline in water. Detailed experimental studies on modelled surrogates, i.e., Anisole, resolved the fundamentals of thermal interaction of coal with iron oxide Fe2O3 nanoparticles. Along the same line of interest, enhancing the combustion efficiency of fuel constitutes a mainstream strategy in the pursuit of meeting the ever-increasing energy demand. Therefore, this thesis also provides a comprehensive mechanistic and thermo-kinetic accounts underpinning the reaction of fuel surrogates, namely Toluene, with singlet oxygen in the internal combustion (IC) engines. Finally, this work extends insights into biological systems, mapping the Alloxan-Glutathione redox cycle to expose the formation of ROS, species that eventually cause necrosis of the pancreatic insulin-producing beta cells and prompt the insulin-dependent diabetes mellitus (IDDM). The methodology involve customised LED-photoreactors, thermal packed-bed reactor, and various reaction product-monitoring systems, e.g., Fourier transform infrared spectroscopy (FTIR) to quantitate the ignition temperatures of fuel surrogates, in-situ electron paramagnetic resonance (EPR) to elucidate the formation of environmentally-persistent free radicals (EPFR) as well as intermediate radical species, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the chemisorption of organic substrates on the nanoparticles, X-ray diffraction for particles characterisation, as well as broad-scan UV-Vis spectroscopy and high-performance liquid chromatography (HPLC) to identify and quantify the intermediate and product species in solutions. Results obtained in this thesis elucidate, for the very first time, the formation of para-semibenzoquinone anion (PSBQ) supporting the reaction pathway leading to the formation of para-benzoquinone during the reaction of phenol (and aniline) with singlet oxygen. These results have practical application to quantify the degradation of organic pollutants in wastewater. Investigations regarding combustion applications shows that the presence of singlet oxygen considerably lowers the activation energy of the initiation channels of aromatic hydrocarbons (e.g., in IC engines), resulting in an energetically improved combustion process, the relative reactivity of singlet oxygen, based on the reaction rate constants, follows the order of OH > H > CH3 > 1O2 > HO2 > 3O2. Furthermore, the chemisorption of anisole on α-Fe2O3 surfaces has been elucidated to follow a direct dissociation of the O–CH3 (and OCH2–H), leading to the formation of surface-bound phenoxy radicals and gaseous species at temperatures as low as 25 °C. This insight applies to free-radical chain reactions that induce spontaneous fires of coal, as low-ranked coal comprises ferric oxide nanoparticles, and equally, to coexistence of aromatic fuels with thermodynamically reactive Fe2O3 surface, e.g., in fly ash, at the cooled-down tail of combustion stacks. Results from alloxan-glutathione redox cycle clarified, for the first time, the direct synchronised generation of dialuric acid radical (DA˙) and glutathione radical (GS˙), assigning the nature of the mysterious “compound 305” to the DA˙- GS˙ complex. These results explain the alloxan-induced diabetes on precise molecular bases. This thesis provides new perspectives on opportunities in understanding the influence of ROS, mainly singlet oxygen (1O2) and superoxide (O2−) in germane chemical reactions. Such attempts will advance the existing ROS-related technologies, and improve the fundamental theories in supports of environmental management and application decisions

    60th Annual Rocky Mountain Conference on Magnetic Resonance

    Get PDF
    Final program, abstracts, and information about the 60th annual meeting of the Rocky Mountain Conference on Magnetic Resonance, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Denver, Colorado, July 21-25, 2019

    Photophysical processes and molecular ordering in organic materials for third generation photovoltaics studied by EPR spectroscopy

    Get PDF
    The world energy consumption is increasing at an average rate of 2.1 % per year, spurred by the economic growth in most of Asian countries, Europe and Canada. The consequent depletion of fossil fuels reservoirs and the reinforced need of environmental sustainability are making the challenge of clean and renewable energy sources one of the most urgent challenges for humankind. Solar power is among the best candidates for the leading role in the energy revolution, being clean, infinite and well distributed over the planet. For this reason, photovoltaic technologies for electricity production are gaining increasing popularity. Although inorganic silicon solar cells dominate the market of photovoltaics, organic and hybrid materials attract considerable interest since their properties like flexibility, light-weight, transparency and low-cost could make the difference in the raising of solar electricity. So far, these materials could not yet outperform conventional silicon, stimulating intensive scientific research on both the development of new materials and the understanding of the photophysical mechanisms governing the photovoltaic behavior of organic/hybrid semiconductors. In this thesis, a series of new organic and hybrid photoactive materials is studied using Electron Paramagnetic Resonance spectroscopy (EPR). This technique, combined with photoexcitation, allows to unambiguously characterize the photoinduced processes involving the formation of paramagnetic states like radicals and triplet states. As shown in the thesis, EPR can also give useful information about molecular ordering in the materials, which is known to be intimately connected with charge transport properties. Conjugated polymers are known for their semiconducting properties and their blends with strong electron accepting fullerene derivatives are among the best performing organic photovoltaic systems. Donor-acceptor alternating copolymers have been introduced to enhance the light-harvesting properties of the blends. Compared to homopolymers, they usually display a lower crystallinity of the deposited films. Thus, XRD techniques are often not suitable to investigate their molecular ordering features. We apply EPR to the analysis of molecular orientational order in the films of two polymers representative of this class, showing that a consistent degree of preferential orientation occurs with two common deposition methods. Fullerene-free materials for polymer solar cells have been recently introduced and overcome some of the drawbacks of fullerene acceptors like the limited absorption and the poor bandgap tunability. In this framework, we study two blends of electron-donor and acceptor polymers to probe their properties with respect to the common fullerene/donor combination, showing that they avoid charge recombination to triplet states which is an active loss mechanism in fullerene-containing blends. Furthermore, the all-polymer films provide a high degree of orientational order and efficient interaction between the donor and acceptor phases that make them promising alternatives to polymer-fullerene blends. A reduced graphene oxide-triphenylamine covalently-linked nanohybrid is studied as potential photosensitizer for TiO2 in dye-sensitized solar cells, able to improve the conductivity and the stability of the system. EPR shows that efficient photoinduced electron transfer from the sensitizer to the semiconductor occurs, paving the way to this new class of photosensitizers. Finally, we investigate the photoactivity of a supramolecular soft-material, forming a gel, composed of small self-assembling donor and acceptor molecules. In this case, EPR allows to verify the efficiency of charge transport across the supramolecular structures, suggesting appealing semiconducting properties of the material. The results of this thesis show the relevance of EPR for unraveling functional and morphological properties of photovoltaic materials and provide a useful characterization of the photophysics of new systems that may be further explored to bring substantial progresses to the field of organic photovoltaics

    DEVELOPMENT AND CHARACTERIZATION OF NANOSTRUCTURED MATERIALS FOR ORGANIC AND HYBRID SOLAR CELLS

    Get PDF
    In the last years, the massive evolution of modern technologies has gradually created an alarming gap between the production and the consumption of energy. Traditional energy resources are no longer sufficient to satisfy the demand of energy without spoiling earth environment. Solar photovoltaics represents a highly promising technology to tackle this global energy issue. The thorough scientific discussion on this fundamental topic gave rise to interesting results and the organic solar cells (OSCs) are one of these achievements. One major reason of the development and the increasing interest in this new technology is its eco-friendliness and the potentially low-cost production of solar modules on flexible (plastic) substrates. Furthermore, new applications are expected by flexible or semitransparent organic solar cells. Nevertheless, two main problems must be overcome before this promising technology replaces the long-established silicon solar cells: the low power conversion efficiency and the scarce stability. In order to tackle these fundamental issues the research efforts must be focused towards both the development of new materials and their detailed photophysical and morphological characterization. Recently the application of nanostructured architectures within the active layers of OSCs has demonstrated to be an efficient alternative to boost solar cell efficiency. Indeed, the nanometric miniaturization of materials opened a huge amount of possibilities to tune and bolster their optical and electrical properties. In this thesis work, the potentialities of the nanostructured architectures are explored. In particular, the attention of this work is addressed towards the development and the photophysical characterization of new hybrid nanostructured photoactive materials. Three different families of nanostructures, colloidal Quantum Dots, Carbon Dots, and hybrid organic/inorganic perovskite nanoparticles, are blended with organic photovoltaic materials. The thorough investigation of the photo-physical and morphological interactions between the nanostructures and the organic materials aims to investigate these nanocomposite as new photoactive materials for next-generation solar cells. The first step of the work focuses on the investigation of a prototypical active layer consisting in binary blends of the fullerene derivative PCBM and CdSe/CdS core-shell Quantum Dots (QDs) capped with different ligands (namely, oleylamine, octadecanethiol, and propanethiol). The double purpose is both to demonstrate that QDs do not influence only the morphology of the active layers, as it is often reported in literature, but also its photophysics and to unravel the pivotal role of QDs ligands on the electron transfer process, which is fundamental for organic solar cells. Through the combined use of steady-state, time resolved and pulsed electron paramagnetic resonance (EPR) techniques the photophysical role of QDs in OSCs is clarified and the possibility to tailor the electron transfer process through the proper choice of QDs ligands is demonstrated. The second part of the work aims at promoting the application of carbon dots (CDs) as electron donor materials for OSCs. CDs seem to be a good alternative to colloidal QDs, thanks to their low toxicity, good biocompatibility and peculiar photo-physical properties, however their poor solubility in organic solvents and mediocre electron-donor properties hampered their photovoltaic application. To tackle these critical issues, the synthesis and photo-physical characterization of N-doped CDs functionalized with two different thiophene-containing groups is carried out in this work. The functionalization intends to enhance the electron donating properties of the CDs and improve their solubility in organic solvents. The increased solubility allows to investigate the photoinduced interactions of functionalized CDs with the PCBM in solution and in solid blends. Through the combined cyclic voltammetry, optical and EPR analysis the enhanced electron donor capabilities of the functionalized CDs are demonstrated and the electron transfer process is characterized in detail. Finally, the last part of the work concentrates on the hybrid organic inorganic perovskite nanostructures. These recent nanostructures are definitely the best candidate to compete with silicon solar cells since their bulk counterpart has already provided record photovoltaic efficiencies in less than five years. However, the application of perovskite nanoparticles (PNPs) in organic solar cells has been scarcely investigated so far. Therefore, in this thesis work the synthesis of PNPs and the investigation of their interaction with both the PCBM and the semiconducting polymer P3HT is carried out. After the confirmation of the obtained synthesis through optical spectroscopy, X-ray diffraction and XPS analysis, the electron transfer from PNPs to PCBM is investigated. In particular, the effect of the ligand length on the electron transfer is examined, probing the process with two different PNPs ligands: octylamine and oleylamine. Successively, the role of the PNPs in blend with P3HT is studied. A triple effect of PNPs on the polymer properties is observed: (1) an increment of the dimension of P3HT crystalline domains, (2) a p-doping of the P3HT, and (3) an enhanced interchain order. The results of this work underpin the relevance of applying nanostructured architectures in organic photovoltaic materials, highlighting their beneficial role not only in morphology, but also in the main photo-physical processes that take place in solar cells. Additionally, the relevant role of the tailored surface engineering of nanostructures in the process of solar energy conversion is evidenced. All these observations aim at providing guidelines for the design and the fabrication of highly efficient solar cells

    42nd Rocky Mountain Conference on Analytical Chemistry

    Get PDF
    Abstracts from the 42nd annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-sponsored by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Broomfield, Colorado, July 30 - August 3, 2000

    Novel spin functionalities of C60 based metallo-molecular interfaces

    Get PDF
    Novel functionalities of C60-based interfaces are investigated with the aim of controlling induced spin-dependent phenomena through electrical and optical charging in photovoltaic devices and the generation of spin-triplet correlations in magneto-molecular/superconductor proximity systems. Low-energy muon spin rotation is used to probe local magnetic field distributions in molecule/metal-oxide heterojunctions. It is shown that the population of interfacial traps after electrical and optical charging produces an induced magnetisation due to the spin-splitting of the interface. This is supported by XAS and XMLD measurements in similar systems. The emergence of a peak at 282 eV, often associated with interfacial hybridisation, after an electrical bias shows a magnetic field dependence in its X-ray linear dichroism. We propose how these effects may be reversibly switched on and off through the tuning of the interfacial chemistry via electromigration of oxygen in the device. In Nb/C60 stacks a superconducting state can be induced in the molecular layer via the proximity effect. The incorporation of weakly magnetic Cu/C60 interfaces leads to the emergence of a paramagnetic spin susceptibility in the superconducting state, as probed by low-energy muon spin rotation. We attribute this effect to the generation of odd-frequency spin-triplet correlations at the spin-split Cu/C60 interface. These studies are a demonstration of novel device architectures available to the field of molecular spintronics. Utilising the unique spin-dependent phenomena observed in hybrid molecular interfaces, systems with new functionalities can be designed

    Overhauser dynamic nuclear polarisation studies in solution-state at 3.4T

    Get PDF
    Studies of Overhauser DNP in liquids are presented in this thesis, where the polarisation is achieved in-situ using TEMPO-derived radicals at a magnetic field of 3.4 T (143 MHz/94 GHz 1H NMR/EPR frequency). The dielectric heating of lossy water solvent is unavoidable at high field, and so knowledge of temperature effects is important to properly compare enhancement results. It is shown that the temperature dependent DNP enhancement of water protons can be determined provided that the 1H NMR shift is sufficiently resolved and the nuclear relaxation T1I is sufficiently fast. Considerable sensitivity gains are made at modest temperatures, e.g. [E] ~ 40 at ~40 degrees C, and much greater enhancements are achievable at elevated temperatures, e.g. [E]~ 130 at ~ 100 degrees C. Since high radical concentrations (100 mM TEMPOL) are used, the leakage and saturation factors approach 1, enabling an experimental determination of the coupling factor from the enhancement. A value of E = 0:055+0:003 is found at 25 degrees C, which agrees well with values in the literature calculated from molecular dynamics simulations. The DNP enhancement is measured as a function of temperature for three organic compounds dissolved in water: glycine, L-proline and acrylic acid; with enhancements of -17, -16 and -11 at ~40 degrees C. To the author's knowledge, this is the first report of solute molecule enhancements for direct in-situ liquid DNP at this field. Significant enhancements are obtained, however, further analysis of the results reveals significantly weaker coupling of the electron spin to the solute molecule protons than to the solvent molecule protons. Discrepancies between experimental coupling factor ratios and those calculated from a force-free hard-sphere model suggest that the classical analytical models used to describe Overhauser DNP may require refinement. In addition to these temperature studies, simultaneous saturation of two EPR hyperfine lines is investigated and achieved, resulting in an increase in observed DNP enhancement
    corecore