34 research outputs found

    Modélisation dynamique et commande optimale d'un système de réfrigération à base d'éjecteur

    Get PDF
    Recently, the ejector-based refrigeration system (ERS) has been widely used in the cooling industry as an appropriate alternative to the compressor-based cooling systems. However, the advantages of ERS such as the reliable operation and low operation and maintenance costs are overshadowed by its low efficiency and design complexity. In this context, this thesis presents the efforts to develop a control model enabling the ERS to operate in its optimal operational conditions. The extensive experimental studies of ERS revealed that at a fixed condenser inlet condition, there exists an optimal primary stream mass flow rate (generating pressure) that simultaneously maximizes the compression ratio (Cr) and exergy efficiency and minimizes the evaporating pressure. Then, the steady state models of the heat exchangers were developed and used to investigate the influence of the increase in generating pressure on the coefficient of performance (COP) of the system and it showed that increasing the generating pressure reduces the COP, linearly. In order to predict the choking regime of the ejector and explain the reasons of observed physical phenomenon, the 1D model of a fixed geometry ejector installed within an R245fa ERS was developed. The developed model demonstrated that the ejector operates in the subcritical mode when the generating pressure is below the Cr optimum point, while it operates in critical mode at or above the optimum generating pressure. Next, a dynamic model of the ERS was built to evaluate the ERS transient response to an increase in the primary stream mass flow rate. Since the ERS dynamics is mainly dominated by the thermal dynamics of the heat exchangers, the dynamic models of the heat exchangers were developed using the moving boundary approach and connected to the developed models of the ejector and steady state models of the pump and expansion valve to build a single dynamic model of the system. The built dynamic model of an ERS was used to estimate the time response of the system in the absence of accurate experimental data of the system’s dynamics. Finally, a control model was designed to drive an ERS towards its optimal operation condition. A self-optimizing, model-free control strategy known as Extremum seeking control (ESC) was adopted to minimize evaporating pressure in a fixed condenser thermal fluid inlet condition. The innovative ESC model named batch phasor ESC (BPESC) was proposed based on estimating the gradient by evaluating the phasor of the output, in batch time. The simulation results indicated that the designed BPESC model can seek and find the optimum evaporating pressure with good performance in terms of predicting the steady state optimal values and the convergence rates.Récemment, le système de réfrigération à éjecteur (SRE) a été largement utilisé dans l'industrie du refroidissement en tant que solution de remplacement appropriée aux systèmes de refroidissement à compresseur. Cependant, les avantages du SRE, tels que le fonctionnement fiable et les faibles couts d'exploitation et de maintenance, sont éclipsés par son faible rendement et sa complexité de conception. Dans ce contexte, ce projet de recherche de doctorat a détaillé les efforts déployés pour développer une stratégie de commande permettant au système de fonctionner dans ses conditions opérationnelles optimales. Les études expérimentales approfondies du SRE ont révélé que, dans une condition d'entrée de condensateur constante, il existe un débit massique optimal du flux primaire (générant une pression) qui maximise simultanément le taux de compression (Cr) et l'efficacité exergétique, et minimise la pression d’évaporation. Ensuite, les modèles à l’état d’équilibre des échangeurs de chaleur ont été développés et utilisés pour étudier l’influence de l’augmentation de la pression générée sur le coefficient de performance (COP) du système et il en ressort que l'augmentation de la pression génératrice réduit le COP de manière linéaire. Afin de prédire le régime d'étouffement de l'éjecteur et d'expliquer les raisons du phénomène physique observé, le modèle 1D d'un éjecteur à géométrie fixe installé dans un système SRE R245fa a été développé. Le modèle développé a démontré que l'éjecteur fonctionne en mode sous-critique lorsque la pression génératrice est inférieure au point optimal de Cr, alors qu'il fonctionne en mode critique à une pression égale ou supérieure à la pression génératrice optimale. Ensuite, un modèle dynamique du SRE a été développé pour étudier la réponse transitoire du SRE lors d’une augmentation du débit massique du flux primaire. Puisque la dynamique du SRE est principalement dominée par la dynamique thermique des échangeurs de chaleur, les modèles dynamiques des échangeurs de chaleur ont été développés à l'aide de l'approche des limites mobiles et connectés aux modèles développés de l'éjecteur et des modèles à l'état stationnaire de la pompe et de la vanne un seul modèle dynamique du système. En l’absence de données expérimentales précises sur la dynamique d’un système SRE, le modèle dynamique développé du SRE a été simulé numériquement pour étudier sa réponse temporelle. Enfin, une stratégie de commande extrêmale (ESC) a été élaboré pour régler automatiquement le SRE à ses conditions de fonctionnement optimales, c’est-à-dire pour trouver la vitesse de la pompe qui minimise la pression dans des conditions d'entrée de condenseur fixes. Afin de proposer une ESC implémentable en temps discret sur une installation réelle sujette à un bruit de mesure important et un traitement hors-ligne par trame, une nouvelle commande extrémale basée sur une approche par phaseur avec une procédure de traitement de signal par trame (BPESC) a été développée et simulée avec le modèle numérique. Les résultats de la simulation ont indiqué que le modèle BPESC peut trouver la vitesse optimale de la pompe avec de bonnes performances en termes de précision et de vitesse de convergence

    On-Line Optimization of Dual-Fuel Combustion Operation by Extremum Seeking Techniques

    Full text link
    [EN] Dual-fuel combustion engines have shown the potential to extend the operating range of Homogeneous Charge Compression Ignition (HCCI) by using several combustion modes, e.g. Reactivity Controlled Compression Ignition (RCCI) at low/medium load, and Partially Premixed Compression (PPC) at high load. In order to optimize the combustion mode operation, the respective sensitivity to the control inputs must be addressed. To this end, in this work the extremum seeking algorithm has been investigated. By definition, this technique allows to detect the control input authority over the system by perturbing its value by a known periodic signal. By analyzing the system response and calculating its gradient, the control input can be adjusted to reach optimal operation. This method has been applied to a dual-fuel engine under fully, highly and partially premixed conditions where the feedback information was provided by in-cylinder pressure and NOx sensors. The gasoline fraction and the injection timing were selected as control inputs and an extremum seeking controller was designed and verified to optimize brake efficiency by tracking the ideal combustion phasing and to reduce NOx emissions as well.The authors would like to recognize the financial support through Alvin Barbier's grant ACIF/2018/141, Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020. The authors also wish to thank Gabriel Alcantarilla for his assistance during the experimental campaign.Pla Moreno, B.; Bares-Moreno, P.; Barbier, ARS.; Guardiola, C. (2021). On-Line Optimization of Dual-Fuel Combustion Operation by Extremum Seeking Techniques. SAE International. 1-10. https://doi.org/10.4271/2021-01-051911

    In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion

    Full text link
    [ES] La actual crisis climática ha instado a la comunidad investigadora y a los fabricantes a brindar soluciones para hacer que el sector del transporte sea más sostenible. De entre las diversas tecnologías propuestas, la combustión a baja temperatura ha sido objeto de una extensa investigación. La combustión premezclada dual-fuel es uno de los conceptos que abordan el compromiso de NOx-hollín en motores de encendido por compresión manteniendo alta eficiencia térmica. Esta combustión hace uso de dos combustibles con diferentes reactividades para mejorar la controlabilidad de este modo de combustión en un amplio rango de funcionamiento. De manera similar a todos los modos de combustión premezclados, esta combustión es sensible a las condiciones de operación y suele estar sujeta a variabilidad cíclica con gradientes de presión significativos. En consecuencia, se requieren estrategias de control avanzadas para garantizar un funcionamiento seguro y preciso del motor. El control en bucle cerrado es una herramienta eficaz para abordar los desafíos que plantea la combustión premezclada dual-fuel. En este tipo de control, para mantener el funcionamiento deseado, las acciones de control se adaptan y corrigen a partir de una retroalimentación con las señales de salida del motor. Esta tesis presenta estrategias de control basadas en la medición de la señal de presión en el cilindro, aplicadas a motores de combustión premezclada dual-fuel. En ella se resuelven diversos aspectos del funcionamiento del motor mediante el diseño de controladores dedicados, haciéndose especial énfasis en analizar e implementar estas soluciones a los diferentes niveles de estratificación de mezcla considerados en estos motores (es decir, totalmente, altamente y parcialmente premezclada). Inicialmente, se diseñan estrategias de control basadas en el procesamiento de la señal de presión en el cilindro y se seleccionan acciones proporcionales-integrales para asegurar el rendimiento deseado del motor sin exceder las limitaciones mecánicas del motor. También se evalúa la técnica extremum seeking para realizar una supervisión de una combustión eficiente y la reducción de emisiones de NOx. Luego se analiza la resonancia de la presión en el cilindro y se implementa un controlador similar a aquel usado para el control de knock para garantizar el funcionamiento seguro del motor. Finalmente, se utilizan modelos matemáticos para diseñar un modelo orientado a control y un observador que tiene como objetivo combinar las señales medidas en el motor para mejorar las capacidades de predicción y diagnóstico en dicha configuración de motor. Los resultados de este trabajo destacan la importancia de considerar el control en bucle cerrado para abordar las limitaciones encontradas en los modos de combustión premezclada. En particular, el uso de la medición de presión en el cilindro muestra la relevancia y el potencial de esta señal para desarrollar estrategias de control complejas y precisas.[CA] L'actual crisi climàtica ha instat a la comunitat investigadora i als fabricants a brindar solucions per a fer que el sector del transport siga més sostenible. D'entre les diverses tecnologies proposades, la combustió a baixa temperatura ha sigut objecte d'una extensa investigació. La combustió premesclada dual-fuel és un dels conceptes que aborden el compromís de NOx-sutge en motors d'encesa per compressió mantenint alta eficiència tèrmica. Aquesta combustió fa ús de dos combustibles amb diferents reactivitats per a millorar la controlabilitat d'aquest tipus de combustió en un ampli rang de funcionament. De manera similar a tots els tipus de combustió premesclada, aquesta combustió és sensible a les condicions d'operació i sol estar subjecta a variabilitat cíclica amb gradients de pressió significatius. En conseqüència, es requereixen estratègies de control avançades per a garantir un funcionament segur i precís del motor. El control en bucle tancat és una eina eficaç per a abordar els desafiaments que planteja la combustió premesclada dual-fuel. En aquesta mena de control, per a mantindre el funcionament desitjat, les accions de control s'adapten i corregeixen a partir d'una retroalimentació amb els senyals d'eixida del motor. Aquesta tesi presenta estratègies de control basades en el mesurament del senyal de pressió en el cilindre, aplicades a motors de combustió premesclada dual-fuel. En ella es resolen diversos aspectes del funcionament del motor mitjançant el disseny de controladors dedicats, fent-se especial èmfasi a analitzar i implementar aquestes solucions als diferents nivells d'estratificació de mescla considerats en aquests motors (és a dir, totalment, altament i parcialment premesclada). Inicialment, es dissenyen estratègies de control basades en el processament del senyal de pressió en el cilindre i se seleccionen accions proporcionals-integrals per a assegurar el rendiment desitjat del motor sense excedir les limitacions mecàniques del motor. També s'avalua la tècnica extremum seeking per a realitzar una supervisió d'una combustió eficient i la reducció d'emissions de NOx. Després s'analitza la ressonància de la pressió en el cilindre i s'implementa un controlador similar a aquell usat per al control de knock per a garantir el funcionament segur del motor. Finalment, s'utilitzen models matemàtics per a dissenyar un model orientat a control i un observador que té com a objectiu combinar els senyals mesurats en el motor per a millorar les capacitats de predicció i diagnòstic en aquesta configuració de motor. Els resultats d'aquest treball destaquen la importància de considerar el control en bucle tancat per a abordar les limitacions trobades en la combustió premesclada. En particular, l'ús del mesurament de pressió en el cilindre mostra la rellevància i el potencial d'aquest senyal per a desenvolupar estratègies de control complexes i precises.[EN] The current climate crisis has urged the research community and manufacturers to provide solutions to make the transportation sector cleaner. Among the various technologies proposed, low temperature combustion has undergone extensive investigation. Premixed dual-fuel combustion is one of the concepts addressing the NOx-soot trade-off in compression ignited engines, while maintaining high thermal efficiency. This combustion makes use of two fuels with different reactivities in order to improve the controllability of this combustion mode over a wide range of operation. Similarly to all premixed combustion modes, this combustion is nevertheless sensitive to the operating conditions and traditionally exhibits cycle-to-cycle variability with significant pressure gradients. Consequently, advanced control strategies to ensure a safe and accurate operation of the engine are required. Feedback control is a powerful approach to address the challenges raised by the premixed dual-fuel combustion. By measuring the output signals from the engine, strategies can be developed to adapt and correct the control actions to maintain the desired operation. This thesis presents control strategies, based on the in-cylinder pressure signal measurement, applied to premixed dual-fuel combustion engines. Various objectives were addressed by designing dedicated controllers, where a special emphasis was made towards analyzing and implementing these solutions to the different levels of mixture stratification considered in these engines (i.e., fully, highly and partially premixed). At first, feedback control strategies based on the in-cylinder pressure signal processing were designed. Proportional-integral actions were selected to ensure the desired engine performance without exceeding the mechanical constraints of the engine. Extremum seeking was evaluated to track efficient combustion phasing and NOx emissions reduction. The in-cylinder pressure resonance was then analyzed and a knock-like controller was implemented to ensure safe operation of the engine. Finally, mathematical models were used to design a control-oriented model and a state observer that aimed to leverage the signals measured in the engine to improve the prediction and diagnostic capabilities in such engine configuration. The results from this work highlighted the importance of considering feedback control to address the limitations encountered in premixed combustion modes. Particularly, the use of the in-cylinder pressure measurement showed the relevance and potential of this signal to develop complex and accurate control strategies.This thesis was financially supported by the Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020 through grant ACIF/2018/141.Barbier, ARS. (2022). In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18327

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics

    Gain tuning of proportional integral controller based on multiobjective optimization and controller hardware-in-loop microgrid setup

    Get PDF
    Proportional integral (PI) control is a commonly used industrial controller framework. This PI controller needs to be tuned to obtain desired response from the process under control. Tuning methods available in literature by and large need sophisticated mathematical modelling, and simplifications in the plant model to perform gain tuning. The process of obtaining approximate plant model conceivably become time consuming and produce less accurate results. This is due to the simplifications desired by the power system applications especially when power electronics based inverters are used in it. Optimal gain selection for PI controllers becomes crucial for microgrid application. Because of the presence of inverter based distributed energy resources. In the proposed approach, a multi-objective genetic algorithm is used to tune the controller to obtain expected step response characteristics. The proposed approach do not need simplified mathematical models. This prevents the need for obtaining unfailing plant models to maintain the fidelity of modelling. Microgrid system and the PI controller are modelled in different software, hardware platform and tuned using the proposed approach. Gain values for PI controller in these different platform are tuned using the same objective function and multi-objective optimization. This proves the re-usability, scalability, and modularity of the proposed tuning algorithm. Three different combination of software, hardware platform are proposed. First, the process and the PI controller are modelled in a computer based hardware. In order to increase the speed of the multi-objective optimization in the computer based hardware parallel computing is employed. This is a natural fit for paralleling the GA based optimization. Second, both the plant and control representation are modelled in the real time digital simulator (RTDS). Finally, a controller hardware in loop platform is used. In this platform, the plant will be modelled in RTDS and the PI controller will be modelled in an FPGA based hardware platform. Results indicate that the proposed approach has promising potentials since it does not need to simplify the switching model and can effectively solve the complicated tuning procedure using parallel computing. Similar advantage could be said for RTDS based tuning because RTDS simulates the models in real time

    Nonlinear hydrodynamic modelling of wave energy converters under controlled conditions

    Get PDF
    One of the major challenges facing modern industrialized countries is the provision of energy: traditional sources, mainly based on fossil fuels, are not only growing scarcer and more expensive, but are also irremediably damaging the environment. Renewable and sustainable energy sources are attractive alternatives that can substantially diversify the energy mix, cut down pollution, and reduce the human footprint on the environment. Ocean energy, including energy generated from the motion of wave, is a tremendous untapped energy resource that could make a decisive contribution to the future supply of clean energy. However, numerous obstacles must be overcome for ocean energy to reach economic viability and compete with other energy sources. Energy can be generated from ocean waves by wave energy converters (WECs). The amount of energy extracted from ocean waves, and therefore the profitability of the extraction, can be increased by optimizing the geometry and the control strategy of the wave energy converter, both of which require mathematical hydrodynamic models that are able to correctly describe the WEC- uid interaction. On the one hand, the accuracy and representativeness of such models have a major in uence on the effectiveness of the WEC design. On the other hand, the computational time required by a model limits its applicability, since many iterations or real-time calculations may be required. Critically, computational time and accuracy are often mutually contrasting features of a mathematical model, so an appropriate compromise should be defined in accordance with the purpose of the model, the device type, and the operational conditions. Linear models, often chosen due to their computational convenience, are likely to be imprecise when a control strategy is implemented in a WEC: under controlled conditions, the motion of the device is exaggerated in order to maximize power absorption, which invalidates the assumption of linearity. The inclusion of nonlinearities in a model is likely to improve the model's accuracy, but increases the computational burden. Therefore, the objective is to define a parsimonious model, in which only relevant nonlinearities are modelled in order to obtain an appropriate compromise between accuracy and computational time. In addition to presenting a wider discussion of nonlinear hydrodynamic modelling for WECs, this thesis contributes the development of a computationally efficient nonlinear hydrodynamic model for axisymmetric WEC devices, from one to six degrees of freedom, based on a novel approach to the nonlinear computation of static and dynamic Froude-Krylov forces

    Applications of Power Electronics:Volume 2

    Get PDF

    Model Predictive Control of Impedance Source Inverter for Photovoltaic Applications

    Get PDF
    A model predictive controlled power electronics interface (PEI) based on impedance source inverter for photovoltaic (PV) applications is proposed in this disssertation. The proposed system has the capability of operation in both grid-connected and islanded mode. Firstly, a model predictive based maximum power point tracking (MPPT) method is proposed for PV applications based on single stage grid-connected Z-source inverter (ZSI). This technique predicts the future behavior of the PV side voltage and current using a digital observer that estimates the parameters of the PV module. Therefore, by predicting a priori the behavior of the PV module and its corresponding effects on the system, it improves the control efficacy. The proposed method adaptively updates the perturbation size in the PV voltage using the predicted model of the system to reduce oscillations and increase convergence speed. The experimental results demonstrate fast dynamic response to changes in solar irradiance level, small oscillations around maximum power point at steady-state, and high MPPT effectiveness from low to high solar irradiance level. The second part of this work focuses on the dual-mode operation of the proposed PEI based on ZSI with capability to operate in islanded and grid-connected mode. The transition from islanded to grid-connected mode and vice versa can cause significant deviation in voltage and current due to mismatch in phase, frequency, and amplitude of voltages. The proposed controller using MPC offers seamless transition between the two modes of operations. The main predictive controller objectives are decoupled power control in grid-connected mode and load voltage regulation in islanded mode. The proposed direct decoupled active and reactive power control in grid connected mode enables the dual-mode ZSI to behave as a power conditioning unit for ancillary services such as reactive power compensation. The proposed controller features simplicity, seamless transition between modes of operations, fast dynamic response, and small tracking error in steady state condition of controller objectives. The operation of the proposed system is verified experimentally. The final part of this dissertation focuses on the low voltage ride through (LVRT) capability of the proposed PV systems during grid faults such as voltage sag. In normal grid condition mode, the maximum available power from the PV panels is injected into the grid. In this mode, the system can provide reactive power compensation as a power conditioning unit for ancillary services from DG systems to main ac grid. In case of grid faults, the proposed system changes the behavior of reactive power injection into the grid for LVRT operation according to the grid requirements. Thus, the proposed controller for ZSI is taking into account both the power quality issues and reactive power injection under abnormal grid conditions
    corecore