144 research outputs found

    GCAT|Panel, a comprehensive structural variant haplotype map of the Iberian population from high-coverage whole-genome sequencing

    Get PDF
    The combined analysis of haplotype panels with phenotype clinical cohorts is a common approach to explore the genetic architecture of human diseases. However, genetic studies are mainly based on single nucleotide variants (SNVs) and small insertions and deletions (indels). Here, we contribute to fill this gap by generating a dense haplotype map focused on the identification, characterization, and phasing of structural variants (SVs). By integrating multiple variant identification methods and Logistic Regression Models (LRMs), we present a catalogue of 35 431 441 variants, including 89 178 SVs (≥50 bp), 30 325 064 SNVs and 5 017 199 indels, across 785 Illumina high coverage (30x) whole-genomes from the Iberian GCAT Cohort, containing a median of 3.52M SNVs, 606 336 indels and 6393 SVs per individual. The haplotype panel is able to impute up to 14 360 728 SNVs/indels and 23 179 SVs, showing a 2.7-fold increase for SVs compared with available genetic variation panels. The value of this panel for SVs analysis is shown through an imputed rare Alu element located in a new locus associated with Mononeuritis of lower limb, a rare neuromuscular disease. This study represents the first deep characterization of genetic variation within the Iberian population and the first operational haplotype panel to systematically include the SVs into genome-wide genetic studies

    GCAT|Panel, a comprehensive structural variant haplotype map of the Iberian population from high-coverage whole-genome sequencing

    Get PDF
    The combined analysis of haplotype panels with phenotype clinical cohorts is a common approach to explore the genetic architecture of human diseases. However, genetic studies are mainly based on single nucleotide variants (SNVs) and small insertions and deletions (indels). Here, we contribute to fill this gap by generating a dense haplotype map focused on the identification, characterization, and phasing of structural variants (SVs). By integrating multiple variant identification methods and Logistic Regression Models (LRMs), we present a catalogue of 35 431 441 variants, including 89 178 SVs (≥50 bp), 30 325 064 SNVs and 5 017 199 indels, across 785 Illumina high coverage (30x) whole-genomes from the Iberian GCAT Cohort, containing a median of 3.52M SNVs, 606 336 indels and 6393 SVs per individual. The haplotype panel is able to impute up to 14 360 728 SNVs/indels and 23 179 SVs, showing a 2.7-fold increase for SVs compared with available genetic variation panels. The value of this panel for SVs analysis is shown through an imputed rare Alu element located in a new locus associated with Mononeuritis of lower limb, a rare neuromuscular disease. This study represents the first deep characterization of genetic variation within the Iberian population and the first operational haplotype panel to systematically include the SVs into genome-wide genetic studies.GCAT|Genomes for Life, a cohort study of the Genomes of Catalonia, Fundació Institut Germans Trias i Pujol (IGTP); IGTP is part of the CERCA Program/Generalitat de Catalunya; GCAT is supported by Acción de Dinamización del ISCIII-MINECO; Ministry of Health of the Generalitat of Catalunya [ADE 10/00026]; Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) [2017-SGR 529]; B.C. is supported by national grants [PI18/01512]; X.F. is supported by VEIS project [001-P-001647] (co-funded by European Regional Development Fund (ERDF), ‘A way to build Europe’); a full list of the investigators who contributed to the generation of the GCAT data is available from www.genomesforlife.com/; Severo Ochoa Program, awarded by the Spanish Government [SEV-2011-00067 and SEV2015-0493]; Spanish Ministry of Science [TIN2015-65316-P]; Innovation and by the Generalitat de Catalunya [2014-SGR-1051 to D.T.]; Agencia Estatal de Investigación (AEI, Spain) [BFU2016-77244-R and PID2019-107836RB-I00]; European Regional Development Fund (FEDER, EU) (to M.C.); Spanish Ministry of Science and Innovation [FPI BES-2016-0077344 to J.V.M.]; C.S. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement [H2020-MSCA-COFUND-2016-754433]; this study made use of data generated by the UK10K Consortium from UK10K COHORT IMPUTATION [EGAS00001000713]; formal agreement with the Barcelona Supercomputing Center (BSC); this study made use of data generated by the Genome of the Netherlands’ project, which is funded by the Netherlands Organization for Scientific Research [184021007], allowing us to use the GoNL reference panel containing SVs, upon request (GoNL Data Access request 2019203); this study also used data generated by the Haplotype Reference Consortium (HRC) accessed through the European Genome-phenome Archive with the accession numbers EGAD00001002729; formal agreement of the Barcelona Supercomputing Center (BSC) with WTSI; this study made use of data generated by the 1000 Genomes (1000G), accessed through the FTP portal (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/); this study used the GeneHancer-for-AnnotSV dump for GeneCards Suite Version 4.14, through a formal agreement between the BSC and the Weizmann Institute of Science. Funding for open access charge: GCAT|Genomes for Life, a cohort study of the Genomes of Catalonia, Fundació Institut Germans Trias i Pujol (IGTP); IGTP is part of the CERCA Program/Generalitat de Catalunya; GCAT is supported by Acción de Dinamización del ISCIII-MINECO; Ministry of Health of the Generalitat of Catalunya [ADE 10/00026]; Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) [2017-SGR 529]; B.C. is supported by national grants [PI18/01512]; X.F. is supported by VEIS project [001-P-001647] (co-funded by European Regional Development Fund (ERDF), ‘A way to build Europe’); a full list of the investigators who contributed to the generation of the GCAT data is available from www.genomesforlife.com/; Severo Ochoa Program, awarded by the Spanish Government [SEV-2011-00067 and SEV2015-0493]; Spanish Ministry of Science [TIN2015-65316-P]; Innovation and by the Generalitat de Catalunya [2014-SGR-1051 to D.T.]; [Agencia Estatal de Investigación (AEI, Spain) [BFU2016-77244-R and PID2019-107836RB-I00]; European Regional Development Fund (FEDER, EU) (to M.C.); Spanish Ministry of Science and Innovation [FPI BES-2016-0077344 to J.V.M.]; C.S. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement [H2020-MSCA-COFUND-2016-754433]; this study made use of data generated by the UK10K Consortium from UK10K COHORT IMPUTATION [EGAS00001000713]; formal agreement with the Barcelona Supercomputing Center (BSC); this study made use of data generated by the Genome of the Netherlands’ project, which is funded by the Netherlands Organization for Scientific Research [184021007], allowing us to use the GoNL reference panel containing SVs, upon request (GoNL Data Access request 2019203); this study also used data generated by the Haplotype Reference Consortium (HRC) accessed through the European Genome-phenome Archive with the accession numbers EGAD00001002729; formal agreement of the Barcelona Supercomputing Center (BSC) with WTSI; this study made use of data generated by the 1000 Genomes (1000G), accessed through the FTP portal (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/); this study used the GeneHancer-for-AnnotSV dump for GeneCards Suite Version 4.14, through a formal agreement between the BSC and The Weizmann Institute of Science."Article signat per 21 autors/es: Jordi Valls-Margarit, Iván Galván-Femenía, Daniel Matías-Sánchez, Natalia Blay, Montserrat Puiggròs, Anna Carreras, Cecilia Salvoro, Beatriz Cortés, Ramon Amela, Xavier Farre, Jon Lerga-Jaso, Marta Puig, Jose Francisco Sánchez-Herrero, Victor Moreno, Manuel Perucho, Lauro Sumoy, Lluís Armengol, Olivier Delaneau, Mario Cáceres, Rafael de Cid, David Torrents"Postprint (published version

    Characterization of de novo Mutations in the Human Germline

    Get PDF
    Contains fulltext : 204522.pdf (publisher's version ) (Open Access)Radboud University, 28 juni 2019Promotor : Veltman, J.A. Co-promotor : Gilissen, C.F.H.A

    Recent identity by descent in human genetic data - methods and applications

    Get PDF
    The thesis describes algorithms for detecting regions of recent identity by descent (IBD) from human genetic data and its applications in optimising resequencing studies, genomic predictions and detecting Mendelian subtypes of diseases. Firstly, we describe the algorithm ANCHAP, which scans pairs of multi-point SNP genotypes for sharing IBD of long haplotypes. A comparison with other methods shows that ANCHAP outperforms them in terms of speed or accuracy. We demonstrate the algorithm on data from population isolates - from Orcades, Croatian islands, and from a population of unrelated individuals. We compare the abundance of IBD segments between cohorts, and identify genetic regions where IBD is most common. Secondly, we verify the IBD regions detected from array data against exome sequence data. We estimate that where sharing IBD between a pair of individuals is inferred, this is confirmed by exome data in 98% of cases. Correctness of IBD detection varies with settings of ANCHAP, length of IBD segments, and position with respect to segment endpoints. We find that with sample sizes of 1000 individuals from an isolated population genotyped using a dense SNP array, and with 20% of these individuals sequenced, 65% of sequences of the un-sequenced subjects can be partially inferred. Implementation of such resequencing strategies requires an IBD-based imputation algorithm, which is outlined. Thirdly, we use recent IBD to detect carriers of Mendelian subtypes of colon cancer. We show this with the example of Lynch syndrome, which accounts for about 3% of colon cancer patients. We detect IBD sharing between known and unknown carriers around DNA mismatch-repair genes. Using the IBD relationship, we build and evaluate a model that predicts presence of Lynch Syndrome mutations. Finally, we discuss whether regions of identity by descent can be used for genomic predictions. We conclude that the utility of the inferred IBD regions depends on accuracy of detection, time to most recent common ancestors and mutation rates since

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    Get PDF
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and 52 organic acids. Our study reveals significant differences in h2 Metabolite-hits among different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of unsaturation have higher h2 Metabolite-hits estimates than phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of common genetic variants for metabolite levels, and elucidates the genetic architecture of metabolite classes

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    Get PDF
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and
    corecore