24 research outputs found

    3D Phase Retrieval at Nano-Scale via Accelerated Wirtinger Flow

    Full text link
    Imaging 3D nano-structures at very high resolution is crucial in a variety of scientific fields. However, due to fundamental limitations of light propagation we can only measure the object indirectly via 2D intensity measurements of the 3D specimen through highly nonlinear projection mappings where a variety of information (including phase) is lost. Reconstruction therefore involves inverting highly non-linear and seemingly non-invertible mappings. In this paper, we introduce a novel technique where the 3D object is directly reconstructed from an accurate non-linear propagation model. Furthermore, we characterize the ambiguities of this model and leverage a priori knowledge to mitigate their effect and also significantly reduce the required number of measurements and hence the acquisition time. We demonstrate the performance of our algorithm via numerical experiments aimed at nano-scale reconstruction of 3D integrated circuits. Moreover, we provide rigorous theoretical guarantees for convergence to stationarity

    Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering

    Get PDF
    International audienceTaking benefit from recent advances in both phase retrieval and estimation of refractive indices from holographic measurements, we propose a unified framework to reconstruct them from intensity-only measurements. Our method relies on a generic and versatile formulation of the inverse problem and includes sparsity constraints. Its modularity enables the use of a variety of forward models, from simple linear ones to more sophisticated nonlinear ones, as well as various regularizers. We present reconstructions that deploy either the beam-propagation method or the iterative Lippmann-Schwinger model, combined with total-variation regularization. They suggest that our proposed (intensity-only) method can reach the same performance as reconstructions from holographic (complex) data. This is of particular interest from a practical point of view because it allows one to simplify the acquisition setup

    Computational Inverse Problems for Partial Differential Equations

    Get PDF
    The problem of determining unknown quantities in a PDE from measurements of (part of) the solution to this PDE arises in a wide range of applications in science, technology, medicine, and finance. The unknown quantity may e.g. be a coefficient, an initial or a boundary condition, a source term, or the shape of a boundary. The identification of such quantities is often computationally challenging and requires profound knowledge of the analytical properties of the underlying PDE as well as numerical techniques. The focus of this workshop was on applications in phase retrieval, imaging with waves in random media, and seismology of the Earth and the Sun, a further emphasis was put on stochastic aspects in the context of uncertainty quantification and parameter identification in stochastic differential equations. Many open problems and mathematical challenges in application fields were addressed, and intensive discussions provided an insight into the high potential of joining deep knowledge in numerical analysis, partial differential equations, and regularization, but also in mathematical statistics, homogenization, optimization, differential geometry, numerical linear algebra, and variational analysis to tackle these challenges

    On the Use of Electromagnetic Inversion for Metasurface Design

    Full text link
    We show that the use of the electromagnetic inverse source framework offers great flexibility in the design of metasurfaces. In particular, this approach is advantageous for antenna design applications where the goal is often to satisfy a set of performance criteria such as half power beamwidths and null directions, rather than satisfying a fully-known complex field. In addition, the inverse source formulation allows the metasurface and the region over which the desired field specifications are provided to be of arbitrary shape. Some of the main challenges in solving this inverse source problem, such as formulating and optimizing a nonlinear cost functional, are addressed. Lastly, some two-dimensional (2D) and three-dimensional (3D) simulated examples are presented to demonstrate the method, followed by a discussion of the method's current limitations.Comment: 13 page

    Fourier ptychography: current applications and future promises

    Get PDF
    Traditional imaging systems exhibit a well-known trade-off between the resolution and the field of view of their captured images. Typical cameras and microscopes can either “zoom in” and image at high-resolution, or they can “zoom out” to see a larger area at lower resolution, but can rarely achieve both effects simultaneously. In this review, we present details about a relatively new procedure termed Fourier ptychography (FP), which addresses the above trade-off to produce gigapixel-scale images without requiring any moving parts. To accomplish this, FP captures multiple low-resolution, large field-of-view images and computationally combines them in the Fourier domain into a high-resolution, large field-of-view result. Here, we present details about the various implementations of FP and highlight its demonstrated advantages to date, such as aberration recovery, phase imaging, and 3D tomographic reconstruction, to name a few. After providing some basics about FP, we list important details for successful experimental implementation, discuss its relationship with other computational imaging techniques, and point to the latest advances in the field while highlighting persisting challenges
    corecore