1,732,525 research outputs found

    Phase-change materials handbook

    Get PDF
    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided

    Polariton Nanophotonics using Phase Change Materials

    Full text link
    Polaritons formed by the coupling of light and material excitations such as plasmons, phonons, or excitons enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. Recently, significant interest has been attracted by polaritons in van der Waals materials, which could lead to applications in sensing, integrated photonic circuits and detectors. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride (hBN), which allow it to interact with the surrounding dielectric environment comprising the low-loss phase change material, Ge3_3Sb2_2Te6_6 (GST). We demonstrate waveguides which confine polaritons in a 1D geometry, and refractive optical elements such as lenses and prisms for phonon polaritons in hBN, which we characterize using scanning near field optical microscopy. Furthermore, we demonstrate metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. Our method, due to its sub-diffraction and planar nature, will enable the realization of programmable miniaturized integrated optoelectronic devices, and will lay the foundation for on-demand biosensors.Comment: 15 pages, 4 figures, typos corrected in v

    Switching Casimir forces with Phase Change Materials

    Get PDF
    We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST) surfaces were achieved upon crystallization of an amorphous sample of AIST. This material is well known for its structural transformation, which produces a significant change in the optical properties and is exploited in optical data storage systems. The finding paves the way to the control of forces in nanosystems, such as micro- or nanoswitches by stimulating the phase change transition via localized heat sources.Comment: 7 pages, 3 figures The AFM images for the inset in Fig.2 were replaced with new ones as obtained with tips having high aspect rati

    Harnessing machine learning potentials to understand the functional properties of phase-change materials

    Get PDF
    The exploitation of phase-change materials (PCMs) in diverse technological applications can be greatly aided by a better understanding of the microscopic origins of their functional properties. Over the last decade, simulations based on electronic-structure calculations within density functional theory (DFT) have provided useful insights into the properties of PCMs. However, large simulation cells and long simulation times beyond the reach of DFT simulations are needed to address several key issues of relevance for the performance of devices. One way to overcome the limitations of DFT methods is to use machine learning (ML) techniques to build interatomic potentials for fast molecular dynamics simulations that still retain a quasi-ab initio accuracy. Here, we review the insights gained on the functional properties of the prototypical PCM GeTe by harnessing such interatomic potentials. Applications and future challenges of the ML techniques in the study of PCMs are also outlined

    Photonic non-volatile memories using phase change materials

    Full text link
    We propose an all-photonic, non-volatile memory and processing element based on phase-change thin-films deposited onto nanophotonic waveguides. Using photonic microring resonators partially covered with Ge2Sb2Te5 (GST) multi-level memory operation in integrated photonic circuits can be achieved. GST provides a dramatic change in refractive index upon transition from the amorphous to crystalline state, which is exploited to reversibly control both the extinction ratio and resonance wavelength of the microcavity with an additional gating port in analogy to optical transistors. Our analysis shows excellent sensitivity to the degree of crystallization inside the GST, thus providing the basis for non-von Neuman neuromorphic computing

    Chalcogenide phase change materials for nanoscale switching

    No full text
    Since the demonstration of threshold switching in chalcogenide alloys over forty five years ago, phase change materials have been extensively investigated for switching and data storage applications. Phase change switching is based on the reversible change between crystalline and amorphous states of a material and in many chalcogenides this change of state takes place in nanoseconds

    Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials

    Get PDF
    This paper studies the thermal, mechanical and microstructural aspects of concrete containing different amounts of microencapsulated phase change materials (PCMs). In addition, numerical simulation is carried out to study the potential application of PCM-modified concrete for reduction in summer surface temperature. It is shown that increasing PCM content in concrete led to lower thermal conductivity and an increase in the heat storage ability of concrete. However, the compressive and flexural strength of concrete significantly decreased. Microstructural analysis showed that PCMs appear to remain intact during mixing; however, PCM particles appear to fail by bursting under loading, creating hemispherical voids and crack initiation points as well as possible entrapped air behaviour. The result of numerical simulation revealed that reduction in summer concrete pavement surface temperature by several degrees was possible, with implications for reduction in concrete thermal stresses, shrinkage and urban heat island effect
    • …
    corecore