261 research outputs found

    Review of Injected Oscillators

    Get PDF
    Oscillators are critical components in electrical and electronic engineering and other engineering and sciences. Oscillators are classified as free-running oscillators and injected oscillators. This chapter describes the background necessary for the analysis and design of injected oscillators. When an oscillator is injected by an external periodic signal mentioned as an injection signal, it is called an injected oscillator. Consequently, two phenomena occur in the injected oscillators: (I) pulling phenomena and (II) locking phenomena. For locking phenomena, the oscillation frequency of the injection signal must be near free-running oscillation frequency or its sub-/super-harmonics. Due to these phenomena are nonlinear phenomena, it is tough to achieve the exact equation or closed-form equation of them. Therefore, researchers are scrutinizing them by different analytical and numerical methods for accomplishing an exact inside view of their performances. In this chapter, injected oscillators are investigated in two main subjects: first, analytical methods on locking and pulling phenomena are reviewed, and second, applications of injected oscillators are reviewed such as injection-locked frequency dividers at the latter. Furthermore, methods of enhancing the locking range are introduced

    Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

    Get PDF
    UltraÂŹwide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixerÂŹbased frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phaseÂŹlocked loop (PLL)ÂŹbased synthesizers. Harmonic cancelaÂŹtion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5ÂŹGHz CSDÂŹQVCO in 0.18 ”m CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ÂŹ120 dBc at 3 MHz oïŹ€set. Compared with existing phase shift LC QVCOs, the proposed CSDÂŹQVCO presents better phase noise and power eïŹƒciency. Finally, a novel injection locking frequency divider (ILFD) is presented. ImÂŹplemented with three stages in 0.18 ”m CMOS technology, the ILFD draws 3ÂŹmA current from a 1.8ÂŹV power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range

    An Integrated Subharmonic Coupled-Oscillator Scheme for a 60-GHz Phased-Array Transmitter

    Get PDF
    This paper describes the design of an integrated coupled-oscillator array in SiGe for millimeter-wave applications. The design focuses on a scalable radio architecture where multiple dies are tiled to form larger arrays. A 2 × 2 oscillator array for a 60-GHz transmitter is fabricated with integrated power amplifiers and on-chip antennas. To lock between multiple dies, an injection-locking scheme appropriate for wire-bond interconnects is described. The 2 × 2 array demonstrates a 200–MHz locking range and 1 × 4 array formed by two adjacent chips has a 60-MHz locking range. The phase noise of the coupled oscillators is below 100 dBc/Hz at a 1-MHz offset when locked to an external reference. To the best of the authors’ knowledge, this is the highest frequency demonstration of coupled oscillators fabricated in a conventional silicon integrated-circuit process

    Design of injection locked frequency divider in 65nm CMOS technology for mmW applications

    Get PDF
    In this paper, an Injection Locking Frequency Divider (ILFD) in 65 nm RF CMOS Technology for applications in millimeter-wave (mm-W) band is presented. The proposed circuit achieves 12.69% of locking range without any tuning mechanism and it can cover the entire mm-W band in presence of Process, Voltage and Temperature (PVT) variations by changing the Injection Locking Oscillator (ILO) voltage control. A design methodology flow is proposed for ILFD design and an overview regarding CMOS capabilities and opportunities for mm-W transceiver implementation is also exposed.Postprint (published version

    Efficient simulation of solution curves and bifurcation loci in injection-locked oscillators

    Get PDF
    A new method is presented for the two-level harmonic-balance analysis of multivalued synchronized solution curves in injection-locked oscillators. The method is based on the extraction of a nonlinear admittance function, which describes the circuit response from the input source terminals. It does not require any optimization or parameter switching procedures, this constituting a significant advantage compared with previous analysis techniques. With additional mathematical conditions, it enables a straightforward determination of the turning point and Hopf bifurcation loci that delimit the stable injection-locked operation bands. The codimension two bifurcation point at which the turning point and Hopf bifurcation loci merge is analyzed in detail, as well as the saddle-connection locus. As it is shown, a second intersection of the saddle-connection locus with the turning point locus acts as a boundary between synchronization points and points associated with jumps and hysteresis. The likely observation of chaotic solutions in the neighborhood of the saddle-connection locus is discussed too. The techniques have been validated by application to several injection-locked oscillators, obtaining good agreement with the experimental results.This work was supported by the Spanish Ministry of Economy and competitiveness under contract TEC2011-29264-C03-01 and the predoctoral fellowship for researchers in training of the University of Cantabria and the Regional Ministry of Education of the Government of Cantabria
    • 

    corecore