10,874 research outputs found

    DSN advanced receiver: Breadboard description and test results

    Get PDF
    A breadboard Advanced Receiver for use in the Deep Space Network was designed, built, and tested in the laboratory. Field testing was also performed during Voyager Uranus encounter at DSS-13. The development of the breadboard is intended to lead towards implementation of the new receiver throughout the network. The receiver is described on a functional level and then in terms of more specific hardware and software architecture. The results of performance tests in the laboratory and in the field are given. Finally, there is a discussion of suggested improvements for the next phase of development

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m

    Hardware simulation of KU-band spacecraft receiver and bit synchronizer, phase 2, volume 1

    Get PDF
    The acquisition behavior of the PN subsystem of an automatically acquiring spacecraft receiver was studied. A symbol synchronizer subsystem was constructed and integrated into the composite simulation of the receiver. The overall performance of the receiver when subjected to anomalies such as signal fades was evaluated. Potential problems associated with PN/carrier sweep interactions were investigated

    Hardware simulation of Ku-band spacecraft receiver and bit synchronizer, volume 1

    Get PDF
    A hardware simulation which emulates an automatically acquiring transmit receive spread spectrum communication and tracking system and developed for use in future NASA programs involving digital communications is considered. The system architecture and tradeoff analysis that led to the selection of the system to be simulated is presented

    A Scalable, Self-Analyzing Digital Locking System for use on Quantum Optics Experiments

    Full text link
    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrodinger cat states.Comment: 7 pages, 5 figure

    Ranging and tracking system for proximity operations, phase 1

    Get PDF
    A study task is reported which is directed towards developing a conceptual design of a small, lightweight range and range rate radar sensor system to meet NASA's requirements for accurate short-range and velocity measurements in an orbital environment. Within the context of the requirements, the short range implies system operation at 0 m to 1850 m (6000 ft) and accurate implies a range measurement to within 1 sigma accuracy of 0.20 m (0.67 ft) and a range rate (velocity) measurement to within 1 sigma accuracy of 0.01 m/sec (0.033 ft/sec)

    Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers

    Get PDF
    Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities' lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully transfer longitudinal control of the system from the auxiliary laser to the measurement laser

    Fast synchronization 3R burst-mode receivers for passive optical networks

    Get PDF
    This paper gives a tutorial overview on high speed burst-mode receiver (BM-RX) requirements, specific for time division multiplexing passive optical networks, and design issues of such BM-RXs as well as their advanced design techniques. It focuses on how to design BM-RXs with short burst overhead for fast synchronization. We present design principles and circuit architectures of various types of burst-mode transimpedance amplifiers, burst-mode limiting amplifiers and burst-mode clock and data recovery circuits. The recent development of 10 Gb/s BM-RXs is highlighted also including dual-rate operation for coexistence with deployed PONs and on-chip auto reset generation to eliminate external timing-critical control signals provided by a PON medium access control. Finally sub-system integration and state-of-the-art system performance for 10 Gb/s PONs are reviewed
    • …
    corecore