15 research outputs found

    Applied Randomized Algorithms for Efficient Genomic Analysis

    Get PDF
    The scope and scale of biological data continues to grow at an exponential clip, driven by advances in genetic sequencing, annotation and widespread adoption of surveillance efforts. For instance, the Sequence Read Archive (SRA) now contains more than 25 petabases of public data, while RefSeq, a collection of reference genomes, recently surpassed 100,000 complete genomes. In the process, it has outgrown the practical reach of many traditional algorithmic approaches in both time and space. Motivated by this extreme scale, this thesis details efficient methods for clustering and summarizing large collections of sequence data. While our primary area of interest is biological sequences, these approaches largely apply to sequence collections of any type, including natural language, software source code, and graph structured data. We applied recent advances in randomized algorithms to practical problems. We used MinHash and HyperLogLog, both examples of Locality- Sensitive Hashing, as well as coresets, which are approximate representations for finite sum problems, to build methods capable of scaling to billions of items. Ultimately, these are all derived from variations on sampling. We combined these advances with hardware-based optimizations and incorporated into free and open-source software libraries (sketch, frp, lib- simdsampling) and practical software tools built on these libraries (Dashing, Minicore, Dashing 2), empowering users to interact practically with colossal datasets on commodity hardware

    An exact approach for aggregated formulations

    Get PDF
    corecore