209 research outputs found

    A versatile source of light-matter quantum states based on laser-cooled atoms

    Get PDF
    Quantum information is a fascinating field that studies situations in which information is encoded as quantum states. This encoding is affected by quantum physical effects (such as superposition or entanglement) and its study has led to exciting discoveries from both fundamental and applied perspectives. An interesting system within this field is a quantum light-matter interface, able to interface quantum states encoded in light and those encoded in matter. These systems can combine the long distance transmission advantage of photonic states with the storage and processing capabilities of matter states. The main goal of this thesis was to develop a quantum light-matter interface able to distribute the photonic state to other interfaces based on different platforms. This versatility could open new possibilities that combine the advantages of the different platforms. In this thesis we studied the challenges to make these hybrid connections possible and we performed two examples of such connections. Our quantum light-matter interface is based on a cloud of Rubidium atoms that are laser-cooled in a magneto-optical trap. We operate the atomic system using the Duan-Lukin-Cirac-Zoller scheme in order to generate pairs consisting on a single photon and an atomic collective spin excitation (so-called spin-wave). Spin-waves can later be mapped efficiently into a second single photon, which allows for synchronization capabilities. We use this scheme to generate different types of quantum states, such as heralded on-demand single photons and photonic qubits, photon-photon correlated states, or entanglement between photonic and atomic qubits. Firstly, we studied two capabilities needed in order to perform the mentioned hybrid connections: the frequency and temporal tunability of the photonic states. In the first one we studied the frequency conversion of the single photons paired with spin-waves in the atomic medium. We could convert their wavelength from 780 nm to 1550 nm using a nonlinear crystal waveguide, while still showing quantum statistics of the field. In the second one we showed a temporal tunability of the single photons with durations ranging from around 10 ns to 10 us. The studied statistics of the fields indicate that the photons are close to Fourier-transform-limited, allowing for photon bandwidth tunability. In the third work we studied the generation of a light-matter entangled state in which the photonic state is encoded as a time-bin qubit. Two key ingredients enabled this experiment: a magnetic-field-induced atomic dephasing that allows to create spin-waves in two distinguishable temporal qubit modes, and largely imbalanced Mach-Zehnder interferometers that enabled the qubit analysis. Photonic time-bin encoding has the advantages of low decoherence in optical fibers and direct suitability for frequency conversion. Finally, we took advantage of these studied capabilities in order to transfer photonic quantum states generated by our laser-cooled atomic system to two different types of light-matter interfaces. The first one was a laser-cooled Rubidium cloud able to transfer single photons into Rydberg excitations. We showed that the quantum statistics of our photonic fields are preserved after the Rydberg storage, which represents a first step for future studies of quantum nonlinear effects using the long range Rydberg interaction. The second one was a crystal doped with Praseodymium ions. In this work the photonic quantum state transfer happened between systems with different atomic species, being a truly hybrid example that was enabled by quantum frequency conversion. These results show a quantum light-matter interface where the properties of the photonic states can be tuned for an optimal interaction with other matter platforms. The proof-of-principle photonic quantum state transfers to the Rydberg and doped-crystal systems open the way to study new experiments that combine advantages of different platforms.La informació quàntica estudia situacions en les que la informació està codificada en estats quàntics. Aquesta codificació és afectada per efectes de la fisca quàntica (com ara superposició o entrellaçament) i el seu estudi ha portat a descobriments i noves aplicacions fascinants. Uns sistemes interessants dins d'aquest camp son les interfícies quàntiques de llum-matèria, les quals interconnecten estats quàntics codificats en llum i en matèria. Aquests sistemes combinen els avantatges dels estats fotònics (bona transmissió a llarga distància) amb els dels estats en matèria (bon emmagatzematge i processament). L'objectiu principal de la tesis era desenvolupar una interfície llum-matèria quàntica que pogués distribuir l'estat fotònic a altres interfícies basades en altres plataformes. Aquesta versatilitat podria obrir noves possibilitats que combinen els avantatges de les diferents plataformes. En aquesta tesis hem estudiat les dificultats que apareixen en aquestes connexions híbrides i hem realitzat dos exemples d'aquestes connexions. La nostra interfície llum-matèria quàntica està basada en un núvol d'àtoms de Rubidi que estan refredats en una trampa magneto-òptica. Operem aquest sistema atòmic utilitzant l'esquema Duan-Lukin-Cirac-Zoller per tal de generar parelles que consisteixen en un fotó individual i una excitació atòmica d'espín col·lectiva (anomenada ona-d'espín). Nosaltres utilitzem aquest esquema per tal de generar diferents tipus d'estats quàntics, com ara fotons individuals o qubits fotònics, estats correlacionats de fotó-fotó o entrellaçament entre qubits fotònics i atòmics. Primerament vam estudiar dues capacitats que es necessiten per tal de fer possible les connexions híbrides mencionades: la flexibilitat de la freqüència i el perfil temporal dels estats fotònics. En el primer vam estudiar la conversió de la freqüència dels fotons individuals aparellats amb ones-d'espín en el medi atòmic. Vam poder convertir la seva longitud d'ona de 780nm a 1552nm utilitzant una guia d'ones amb un cristall no-lineal. En el segon vam mostrar la flexibilitat en la duració temporal de fotons individuals amb duracions que van de 10 ns a 10 ns. Les propietats estudiades dels fotons indiquen que el seu espectre està limitat per la transformada de Fourier, la qual cosa permet la flexibilitat del seu espectre. En el tercer treball vam estudiar la generació d'un estat entrellaçat entre llum i matèria en el que l'estat fotònic està codificat en un time-bin qubit. Dos ingredients claus van permetre aquest experiment: un desfasament atòmic induït per un camp magnètic que permet crear ones-d’espín en dos modes temporals distingibles, i interferòmetres de Mach-Zehnder que van permetre l’anàlisi dels qubits. La codificació fotònica de time-bin té els avantatges de baixa decoherència en fibres òptiques i una compatibilitat directa per efectuar conversió de freqüència. Finalment, vam aprofitar aquestes capacitats estudiades per tal de transferir estats quàntics fotònics cap a dos tipus diferents d'interfícies llum matèria. La primera va ser una altre núvol fred d’àtoms de Rubidi en el que és possible transferir fotons individuals cap a excitacions de Rydberg. Aquest experiment representa el primer pas per a futurs estudis d'efectes quàntics no-lineals utilitzant les interaccions Rydberg de llarga distància. Els segon va ser un cristall dopat amb ions de Praseodimi. En aquest treball la transferència de l'estat quàntic va passar entre sistemes amb diferents espècies atòmiques, sent un veritable exemple híbrid fet possible per la conversió de freqüència quàntica. Aquests resultats mostren una interfície llum-matèria quàntica en la que les propietats dels estats fotònics poden ser optimitzades per obtenir una interacció òptima amb altres plataformes materials. Les transferències fotòniques d'estats quàntics als sistemes de Rydberg i de cristalls obren la porta a l'estudi de nous experiments que combinin els avantatges de les diferents plataformes

    A versatile source of light-matter quantum states based on laser-cooled atoms

    Get PDF
    Quantum information is a fascinating field that studies situations in which information is encoded as quantum states. This encoding is affected by quantum physical effects (such as superposition or entanglement) and its study has led to exciting discoveries from both fundamental and applied perspectives. An interesting system within this field is a quantum light-matter interface, able to interface quantum states encoded in light and those encoded in matter. These systems can combine the long distance transmission advantage of photonic states with the storage and processing capabilities of matter states. The main goal of this thesis was to develop a quantum light-matter interface able to distribute the photonic state to other interfaces based on different platforms. This versatility could open new possibilities that combine the advantages of the different platforms. In this thesis we studied the challenges to make these hybrid connections possible and we performed two examples of such connections. Our quantum light-matter interface is based on a cloud of Rubidium atoms that are laser-cooled in a magneto-optical trap. We operate the atomic system using the Duan-Lukin-Cirac-Zoller scheme in order to generate pairs consisting on a single photon and an atomic collective spin excitation (so-called spin-wave). Spin-waves can later be mapped efficiently into a second single photon, which allows for synchronization capabilities. We use this scheme to generate different types of quantum states, such as heralded on-demand single photons and photonic qubits, photon-photon correlated states, or entanglement between photonic and atomic qubits. Firstly, we studied two capabilities needed in order to perform the mentioned hybrid connections: the frequency and temporal tunability of the photonic states. In the first one we studied the frequency conversion of the single photons paired with spin-waves in the atomic medium. We could convert their wavelength from 780 nm to 1550 nm using a nonlinear crystal waveguide, while still showing quantum statistics of the field. In the second one we showed a temporal tunability of the single photons with durations ranging from around 10 ns to 10 us. The studied statistics of the fields indicate that the photons are close to Fourier-transform-limited, allowing for photon bandwidth tunability. In the third work we studied the generation of a light-matter entangled state in which the photonic state is encoded as a time-bin qubit. Two key ingredients enabled this experiment: a magnetic-field-induced atomic dephasing that allows to create spin-waves in two distinguishable temporal qubit modes, and largely imbalanced Mach-Zehnder interferometers that enabled the qubit analysis. Photonic time-bin encoding has the advantages of low decoherence in optical fibers and direct suitability for frequency conversion. Finally, we took advantage of these studied capabilities in order to transfer photonic quantum states generated by our laser-cooled atomic system to two different types of light-matter interfaces. The first one was a laser-cooled Rubidium cloud able to transfer single photons into Rydberg excitations. We showed that the quantum statistics of our photonic fields are preserved after the Rydberg storage, which represents a first step for future studies of quantum nonlinear effects using the long range Rydberg interaction. The second one was a crystal doped with Praseodymium ions. In this work the photonic quantum state transfer happened between systems with different atomic species, being a truly hybrid example that was enabled by quantum frequency conversion. These results show a quantum light-matter interface where the properties of the photonic states can be tuned for an optimal interaction with other matter platforms. The proof-of-principle photonic quantum state transfers to the Rydberg and doped-crystal systems open the way to study new experiments that combine advantages of different platforms.La informació quàntica estudia situacions en les que la informació està codificada en estats quàntics. Aquesta codificació és afectada per efectes de la fisca quàntica (com ara superposició o entrellaçament) i el seu estudi ha portat a descobriments i noves aplicacions fascinants. Uns sistemes interessants dins d'aquest camp son les interfícies quàntiques de llum-matèria, les quals interconnecten estats quàntics codificats en llum i en matèria. Aquests sistemes combinen els avantatges dels estats fotònics (bona transmissió a llarga distància) amb els dels estats en matèria (bon emmagatzematge i processament). L'objectiu principal de la tesis era desenvolupar una interfície llum-matèria quàntica que pogués distribuir l'estat fotònic a altres interfícies basades en altres plataformes. Aquesta versatilitat podria obrir noves possibilitats que combinen els avantatges de les diferents plataformes. En aquesta tesis hem estudiat les dificultats que apareixen en aquestes connexions híbrides i hem realitzat dos exemples d'aquestes connexions. La nostra interfície llum-matèria quàntica està basada en un núvol d'àtoms de Rubidi que estan refredats en una trampa magneto-òptica. Operem aquest sistema atòmic utilitzant l'esquema Duan-Lukin-Cirac-Zoller per tal de generar parelles que consisteixen en un fotó individual i una excitació atòmica d'espín col·lectiva (anomenada ona-d'espín). Nosaltres utilitzem aquest esquema per tal de generar diferents tipus d'estats quàntics, com ara fotons individuals o qubits fotònics, estats correlacionats de fotó-fotó o entrellaçament entre qubits fotònics i atòmics. Primerament vam estudiar dues capacitats que es necessiten per tal de fer possible les connexions híbrides mencionades: la flexibilitat de la freqüència i el perfil temporal dels estats fotònics. En el primer vam estudiar la conversió de la freqüència dels fotons individuals aparellats amb ones-d'espín en el medi atòmic. Vam poder convertir la seva longitud d'ona de 780nm a 1552nm utilitzant una guia d'ones amb un cristall no-lineal. En el segon vam mostrar la flexibilitat en la duració temporal de fotons individuals amb duracions que van de 10 ns a 10 ns. Les propietats estudiades dels fotons indiquen que el seu espectre està limitat per la transformada de Fourier, la qual cosa permet la flexibilitat del seu espectre. En el tercer treball vam estudiar la generació d'un estat entrellaçat entre llum i matèria en el que l'estat fotònic està codificat en un time-bin qubit. Dos ingredients claus van permetre aquest experiment: un desfasament atòmic induït per un camp magnètic que permet crear ones-d’espín en dos modes temporals distingibles, i interferòmetres de Mach-Zehnder que van permetre l’anàlisi dels qubits. La codificació fotònica de time-bin té els avantatges de baixa decoherència en fibres òptiques i una compatibilitat directa per efectuar conversió de freqüència. Finalment, vam aprofitar aquestes capacitats estudiades per tal de transferir estats quàntics fotònics cap a dos tipus diferents d'interfícies llum matèria. La primera va ser una altre núvol fred d’àtoms de Rubidi en el que és possible transferir fotons individuals cap a excitacions de Rydberg. Aquest experiment representa el primer pas per a futurs estudis d'efectes quàntics no-lineals utilitzant les interaccions Rydberg de llarga distància. Els segon va ser un cristall dopat amb ions de Praseodimi. En aquest treball la transferència de l'estat quàntic va passar entre sistemes amb diferents espècies atòmiques, sent un veritable exemple híbrid fet possible per la conversió de freqüència quàntica. Aquests resultats mostren una interfície llum-matèria quàntica en la que les propietats dels estats fotònics poden ser optimitzades per obtenir una interacció òptima amb altres plataformes materials. Les transferències fotòniques d'estats quàntics als sistemes de Rydberg i de cristalls obren la porta a l'estudi de nous experiments que combinin els avantatges de les diferents plataformes.Postprint (published version

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Semiconductor Laser Dynamics

    Get PDF
    This is a collection of 18 papers, two of which are reviews and seven are invited feature papers, that together form the Photonics Special Issue “Semiconductor Laser Dynamics: Fundamentals and Applications”, published in 2020. This collection is edited by Daan Lenstra, an internationally recognized specialist in the field for 40 years

    Resonance Fluoresence of an Atom Pair in an Optical Resonator

    Get PDF

    Squeezing-enhanced feedback cooling of a microresonator

    Get PDF

    Spontaneous parametric down-conversion sources for generation of atom-resonant quantum light

    Get PDF
    Premi extraordinari doctorat UPC curs 2017-2018. Àmbit de CiènciesThis thesis studies different designs of optical parametric oscillators as sources of atom-resonant quantum light resonant with the rubidium D1 line.We analyze the mode structure and filtering techniques in a conventional OPO based on a crystal inside a ring cavity. We also present a first fully-tunable design of a monolithic doubly-resonant OPO. The first part presents the study of a multimode optical parametric oscillator from the theoretical point of view, calculating a multimode Bogoliubov transformation and a time-domain intensity correlation function. Next, we experimentally observe signatures of multi- and singlemode OPO output in pairwise time-of-arrival correlations of the generated photons, achieved thanks to Faraday anomalous dispersion filtering technique based on optical properties of atomic vapor in magnetic field. The second, more extensive part of the thesis features the study of a new design of the OPO, a monolithic cavity (crystal polished and coated so that it forms a cavity) that allows full tunability even in a multiply resonant configuration. The architecture we propose combines the advantages of a conventional ring cavity based OPO, with robustness, lowmaintenance, compactness and stability characteristic of monolithic systems. The tunability of the doubly-resonant monolithic OPO is realized by maintaining different sections of the crystal at different temperatures and pressing it with a piezoelectric actuator. The tuning method is tested when the system is employed as a second harmonic generator. In addition, we describe a new nonlinear effect that comes into play when the monolithic cavity is pumped with 795 nm light. The phenomenon,that we call a photo-Kerr effect causes the cavity behavior resembling optical bistability due to Kerr nonlinearity, but with the magnitude (Kerr coefficient) dependent on the long-time average of intra-cavity power. The model we propose agrees well with the experimental results. The effect simplifies greatly the cavity stabilization, causing the cavity to maintain itself close to resonance even as the laser wavelength is changed by more than a free spectral range. The thesis concludes by studying the suitability of the monolithic cavity with the photo-Kerr effect for squeezed light generation. We test the monolithic cavity as an OPO and demonstrate 1.6 dB of quadrature squeezing via homodyne detection.Esta tesis estudia diferentes diseños de osciladores paramétricos (OPO, por sus signas en inglés) como fuentes de luz cuántica resonante con la línea D1 de átomos de rubidio. Analizamos la estructura de modos y las técnicas de filtrado en un oscilador paramétrico convencional basado en un cristal no lineal dentro de una cavidad. También presentamos el primer diseño de un OPO monolítico con dos resonancias con frecuencias ajustables. La primera parte de la tesis presenta el estudio de un oscilador paramétrico multimodo desde el punto de vista teórico, calculando una transformación de Bogoliubov multimodo y una función de correlación temporal de intensidad. A continuación, se observan experimentalmente las señales de la emisión de OPO multimodo o de un solo modo en correlaciones de tiempo de llegada de pares de los fotones generados, obtenidos gracias a la técnica de filtración de dispersión anómala de Faraday basada en las propiedades ópticas del vapor atómico en campo magnético. La segunda y más extensa parte de la tesis presenta el estudio de un nuevo diseño del OPO: una cavidad monolítica (cristal pulido y recubierto de tal manera que forma una cavidad) que permite ajustar las frecuencias de resonancia, incluso en una configuración multi-resonante. La arquitectura que proponemos combina las ventajas de una OPO convencional basada en una cavidad afuera de cristal, con robustez, bajo mantenimiento, compacidad y estabilidad característica de los sistemas monolíticos. La ajustibilidad del OPO monolítico con doble resonancia se realiza manteniendo diferentes secciones del cristal a diferentes temperaturas y presionándolo con un element piezoeléctrico. El método de afinación es sometido a prueba cuando el sistema se emplea como generador de segundo armónico. Además, describimos un nuevo efecto no lineal que entra en juego cuando la cavidad monolítica se bombea con luz 795 nm. El fenómeno que denominamos efecto photo-Kerr provoca que el comportamiento de la cavidad se asemeje a la biestabilidad óptica debido a la no linealidad de Kerr, pero con la magnitud (coeficiente de Kerr) dependiente del promedio de tiempo largo de la potencia de la luz dentro de la cavidad. El modelo numérico que proponemos coincide con los resultados experimentales. El efecto simplifica en gran medida la estabilización de la cavidad, hacienda que ésta se mantenga cerca de la resonancia incluso cuando la longitud de onda del láser cambia en más de la distancia entre dos resonancias consecutivas. La tesis concluye estudiando la idoneidad de la cavidad monolítica con el efecto photo-Kerr para la generación de luz comprimida. Se emplea la cavidad monolítica como oscilador paramétrico, obteniando luz comprimida y se demuestra 1.6 dB de squeezing mediante detección homodina.Award-winningPostprint (published version
    corecore