36 research outputs found

    The role of multi-scale phase synchronization and cross-frequency interactions in cognitive integration

    Get PDF
    Neuronal processing is distributed into anatomically distinct, largely specialized, neuronal populations. These populations undergo rhythmic fluctuations in excitability, which are commonly known as neuronal oscillations. Electrophysiological studies of neuronal activity have shown that phase synchronization of oscillations within frequencies characterizes both resting state and task execution and that its strength is correlated with task performance. Therefore phase-synchronization within frequencies is thought to support communication between oscillating neuronal populations and thereby integration and coordination of anatomically distributed processing in cognitive functions. However, it has remained open if and how phase synchronization is associated with directional flow of information. Furthermore, oscillations and synchronization are observed concurrently in multiple frequencies, which are thought to underlie distinct computational functions. Little is known how oscillations and synchronized networks of different frequencies in the human brain are integrated and enable unified cognitive function and experience. In the first study of this thesis, we developed a measure of directed connectivity in networks of coupled oscillators, called Phase Transfer Entropy (Phase TE) and tested if Phase TE could detect directional flow in simulated data in the presence of noise and signal mixing. Results showed that Phase TE indeed reliably detected information flow under these conditions and was computationally efficient. In the other three studies, we investigated if two different forms of inter-areal cross-frequency coupling (CFC), namely cross-frequency phase synchrony (CFS) and phase-amplitude coupling (PAC), could support integration and coordination of neuronal processing distributed across frequency bands in the human brain. In the second study, we analyzed source-reconstructed magneto- and electroencephalographic (M/EEG) data to investigate whether inter-areal CFS could be observed between within-frequency synchronized networks and thereby support the coordination of spectrally distributed processing in visual working memory (VWM). The results showed that CFS was increased during VWM maintenance among theta to gamma frequency bands and the strength of CFS networks predicted individual VWM capacity. Spectral patterns of CFS were found to be different from PAC, indicating complementary roles for both mechanisms. In the third study, we analyzed source-reconstructed M/EEG data to investigate whether inter-areal CFS and PAC could be observed during two multi-object visual tracking tasks and thereby support visual attention. PAC was found to be significantly correlated with object load in both tasks, and CFS in one task. Further, patterns of CFS and PAC differed significantly between subjects with high and low capacity for visual attention. In the fourth study, we analyzed intracerebral stereo-electroencephalographic data (SEEG) and source-reconstructed MEG data to investigate whether CFS and PAC are present also in resting state. Further, in order to address concerns about observations of CFC being spurious and caused by non-sinusoidal or non-zero mean signal waveforms, we introduced a new approach to identify true inter-areal CFC connections and discard potentially spurious ones. We observed both inter-areal CFS and PAC, and showed that a significant part of connections was unambiguously true and non-spurious. Spatial profiles differed between CFS and PAC, but were consistent across datasets. Together, the results from studies II-IV provide evidence that inter-areal CFS and PAC, in complementary ways, connect frequency-specific phase-synchronized networks that involve functionally specialized regions across the cortex to support complex functions such as VWM and attention, and also characterize the resting state. Inter-areal CFC thus may be crucial for the coordination and integration of spectrally distributed processing and the emergence of introspectively coherent cognitive function.Keskeinen kysymys aivotutkimuksessa on, kuinka ajattelu ja kognitio syntyvät ihmisaivojen 10^15 hermosolussa. Informaation käsittely aivoissa tapahtuu suurissa hermosolupopulaatioissa, jotka ovat toiminnallisesti erikoistuneita ja anatomisesti eroteltuja eri aivoalueille. Niiden aktivaatiorakenteiden jaksollisia muutoksia kutsutaan aivorytmeiksi eli oskillaatioiksi. Hermosolupopulaatioiden välistä viestintää edesauttaa niiden toiminnan samantahtisuus eli synkronoituminen. Sähköfysiologisissa tutkimuksissa on havaittu aivorytmien synkronoituvan sekä lepomittausten että tehtävien suorituksen aikana siten että tämä synkronoituminen ennustaa kognitiivissa tehtävissä suoriutumista. Oskillaatioiden vaihesynkronia ei kuitenkaan kerro niiden välisen vuorovaikutuksen suunnasta. Tämän lisäksi oskillaatioita ja niiden välistä synkroniaa havaitaan yhtäaikaisesti lukuisilla eri taajuuksilla, joiden ajatellaan olevan vastuussa erillisistä laskennallisista ja kognitiivisista toiminnoista. Toistaiseksi on kuitenkin jäänyt kartoittamatta, miten informaation käsittely eri taajuuksilla yhdistetään yhtenäisiksi kognitiivisiksi toiminnoiksi, ja havaitaanko myös eri taajuisten oskillaatioverkkojen välillä synkroniaa. Väitöskirjan ensimmäisessä osatyössä on kehitetty uusi tapata mitata oskillaattoriverkkojen vuorovaikutusten suuntia, jonka toimivuus todennettiin simuloimalla synkronoituneita hermosolupopulaatioita. Väitöskirjan muissa osatöissä on tutkittu havaitaanko ihmisaivoissa eri taajuisten oskillaatioiden välistä synkronoitumista. Erityisesti tutkittiin kahta erilaista synkronian muotoa, joista ensimmäinen (’cross- frequency phase synchrony’,CFS) mittaa kahden oskillaation välistä vaihesuhdetta ja toinen (’phase-amplitude coupling’, PAC) vaiheen ja amplitudin suhdetta. Väitöskirjan toisessa osassa tutkittiin, selittääkö CFS koehenkilöiden suoriutumista näkötyömuistitehtävässä. Tutkimukseen osallistuneilta koehenkilöiltä mitattiin aivosähkökäyrä (EEG) ja aivomagneettikäyrä (MEG), joiden avulla selvitettiin havaitaanko aivoalueiden välistä synkroniaa (CFS). Tutkimustulokset osoittivat, että koehenkilöiden CFS oli korkeampi näkötyömuistitehtävän mielessä pitämisen aikana theta-taajuuksista gamma-taajuuksiin asti ja että CFS-verkkojen vahvuus ennusti yksilöllistä työmuistikapasiteettia. Kolmannessa tutkimuksessa analysoitiin MEG- ja EEG-aivokuvantamislaitteita käyttäen onko aivoalueiden välillä CFS:ä ja PAC:a kahdessa näkötarkkaavaisuustehtävässä. PAC lisääntyi tilastollisesti merkitsevästi tehtävän vaikeuden mukaan kummassakin tehtävässä, kun taas CFS lisääntyi yhdessä tehtävässä. Lisäksi CFS ja PAC taajuusparit olivat erilaisia hyvin suoriutuvien koehenkilöiden sekä heikosti suoriutuvien koehenkilöiden välillä. Neljännessä tutkimuksessa tutkittiin havaitaanko CFS:ä ja PAC:a aivojen lepotilassa. Aivokuoren aktiivisuutta mitattiin MEG:llä sekä epilepsiapotilailta aivoihin kirurgisesti asetetuilla elektrodeilla. CFS:ä sekä PAC:a havaittiin kummallakin menetelmällä. Lisäksi kehitimme menetelmän joka vähentää väärien havaintojen todennäköisyyttä ja lisää aitojen CFS ja PAC yhteyksien havaitsemista. Tulokset osoittavat, että merkittävä osuus yhteyksistä aivoalueiden välillä on aitoja. CFS- ja PAC-profiilit erosivat toisistaan, mutta olivat samanlaisia eri menetelmillä tutkittaessa. Yhdistettynä tulokset tutkimuksista II–IV viittaavat siihen, että CFS ja PAC yhdistävät eri taajuuksille ja aivoalueille hajautettua informaation käsittelyä. CFS:sää ja PAC:ia havaittiin aivojen lepotilassa mutta myös tarkkaavaisuus- ja näkötyömuistitehtävän aikana. CFS ja PAC saattavat mahdollistaa eri taajuisten aivorytmien ja hajautettujen prosessien koordinaation ja yhdistämisen

    Long-range phase synchronization of high-gamma activity in human cortex

    Get PDF
    AbstractInter-areal synchronization of neuronal oscillations below 100 Hz is ubiquitous in cortical circuitry and thought to regulate neuronal communication. In contrast, faster activities are generally considered to be exclusively local-circuit phenomena. We show with human intracerebral recordings that 100–300 Hz high-gamma activity (HGA) may be synchronized between widely distributed regions. HGA synchronization was not attributable to artefacts or to epileptic pathophysiology. Instead, HGA synchronization exhibited a reliable cortical connectivity and community structures, and a laminar profile opposite to that of lower frequencies. Importantly, HGA synchronization among functional brain systems during non-REM sleep was distinct from that in resting state. Moreover, HGA synchronization was transiently enhanced for correctly inhibited responses in a Go/NoGo task. These findings show that HGA synchronization constitutes a new, functionally significant form of neuronal spike-timing relationships in brain activity. We suggest that HGA synchronization reflects the temporal microstructure of spiking-based neuronal communication per se in cortical circuits

    Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings

    Get PDF
    cited By 0Phase synchronization of neuronal oscillations in specific frequency bands coordinates anatomically distributed neuronal processing and communication. Typically, oscillations and synchronization take place concurrently in many distinct frequencies, which serve separate computational roles in cognitive functions. While within-frequency phase synchronization has been studied extensively, less is known about the mechanisms that govern neuronal processing distributed across frequencies and brain regions. Such integration of processing between frequencies could be achieved via cross-frequency coupling (CFC), either by phase-amplitude coupling (PAC) or by n:m-cross-frequency phase synchrony (CFS). So far, studies have mostly focused on local CFC in individual brain regions, whereas the presence and functional organization of CFC between brain areas have remained largely unknown. We posit that interareal CFC may be essential for large-scale coordination of neuronal activity and investigate here whether genuine CFC networks are present in human resting-state (RS) brain activity. To assess the functional organization of CFC networks, we identified brain-wide CFC networks at mesoscale resolution from stereoelectroencephalography (SEEG) and at macroscale resolution from source-reconstructed magnetoencephalography (MEG) data. We developed a novel, to our knowledge, graph-theoretical method to distinguish genuine CFC from spurious CFC that may arise from nonsinusoidal signals ubiquitous in neuronal activity. We show that genuine interareal CFC is present in human RS activity in both SEEG and MEG data. Both CFS and PAC networks coupled theta and alpha oscillations with higher frequencies in large-scale networks connecting anterior and posterior brain regions. CFS and PAC networks had distinct spectral patterns and opposing distribution of low- and high-frequency network hubs, implying that they constitute distinct CFC mechanisms. The strength of CFS networks was also predictive of cognitive performance in a separate neuropsychological assessment. In conclusion, these results provide evidence for interareal CFS and PAC being 2 distinct mechanisms for coupling oscillations across frequencies in large-scale brain networks.Peer reviewe

    Loss of consciousness is related to hyper-1 correlated gamma-band activity in anesthetized macaques and sleeping humans

    Get PDF
    Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness

    Localization of deep brain activity with scalp and subdural EEG

    Get PDF
    To what extent electrocorticography (ECoG) and electroencephalography (scalp EEG) differ in their capability to locate sources of deep brain activity is far from evident. Compared to EEG, the spatial resolution and signal- to-noise ratio of ECoG is superior but its spatial coverage is more restricted, as is arguably the volume of tissue activity effectively measured from. Moreover, scalp EEG studies are providing evidence of locating activity from deep sources such as the hippocampus using high-density setups during quiet wakefulness. To address this question, we recorded a multimodal dataset from 4 patients with refractory epilepsy during quiet wakefulness. This data comprises simultaneous scalp, subdural and depth EEG electrode recordings. The latter was located in the hippocampus or insula and provided us with our "ground truth" for source localization of deep activity. We ap- plied independent component analysis (ICA) for the purpose of separating the independent sources in theta, alpha and beta frequency band activity. In all patients subdural- and scalp EEG components were observed which had a significant zero-lag correlation with one or more contacts of the depth electrodes. Subsequent dipole modeling of the correlating components revealed dipole locations that were significantly closer to the depth electrodes compared to the dipole location of non-correlating components. These findings support the idea that components found in both recording modalities originate from neural activity in close proximity to the depth electrodes. Sources localized with subdural electrodes were similar to 70% closer to the depth electrode than sources localized with EEG with an absolute improvement of around similar to 2cm. In our opinion, this is not a considerable improvement in source localization accuracy given that, for clinical purposes, ECoG electrodes were implanted in close proximity to the depth electrodes. Furthermore, the ECoG grid attenuates the scalp EEG, due to the electrically isolating silastic sheets in which the ECoG electrodes are embedded. Our results on dipole modeling show that the deep source localization accuracy of scalp EEG is comparable to that of ECoG. Significance Statement Deep and subcortical regions play an important role in brain function. However, as joint recordings at multiple spatial scales to study brain function in humans are still scarce, it is still unresolved to what extent ECoG and EEG differ in their capability to locate sources of deep brain activity. To the best of our knowledge, this is the first study presenting a dataset of simultaneously recorded EEG, ECoG and depth electrodes in the hippocampus or insula, with a focus on non-epileptiform activity (quiet wakefulness). Furthermore, we are the first study to provide experimental findings on the comparison of source localization of deep cortical structures between invasive and non-invasive brain activity measured from the cortical surface

    Global and local complexity of intracranial EEG decreases during NREM sleep

    Get PDF
    Key to understanding the neuronal basis of consciousness is the characterisation of the neural signatures of changes in level of consciousness during sleep. Here we analysed three measures of dynamical complexity on spontaneous depth electrode recordings from 10 epilepsy patients during wakeful rest and different stages of sleep: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability over time of the set of channels active above a threshold; (iii) synchrony coalition entropy, which measures the variability over time of the set of synchronous channels. When computed across sets of channels that are broadly distributed across multiple brain regions, all 3 measures decreased substantially in all participants during early-night non-rapid eye movement (NREM) sleep. This decrease was partially reversed during late-night NREM sleep, while the measures scored similar to wakeful rest during rapid eye movement (REM) sleep. This global pattern was in almost all cases mirrored at the local level by groups of channels located in a single region. In testing for differences between regions, we found elevated signal complexity in the frontal lobe. These differences could not be attributed solely to changes in spectral power between conditions. Our results provide further evidence that the level of consciousness correlates with neural dynamical complexity

    Cross-approximate entropy of cortical local field potentials quantifies effects of anesthesia - a pilot study in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma) frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn), we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP) from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state) with those at increasing concentrations of isoflurane, enflurane and halothane.</p> <p>Results</p> <p>Cortical LFP signals were more synchronous, as expressed by XApEn, in the presence of anesthetics. Specifically, XApEn was a monotonously declining function of anesthetic concentration. Isoflurane and enflurane were indistinguishable; at a concentration of 1 MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimuli in 50% of subjects) both volatile agents reduced XApEn by about 70%, whereas halothane was less potent (50% reduction).</p> <p>Conclusions</p> <p>The results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the quantification of these effects in terms of XApEn has a similar discriminatory power as changes of spontaneous action potential rates. Thus, XApEn of field potentials recorded from local cortical networks provides valuable information on the anesthetic state of the brain.</p

    Comparison of methods to identify modules in noisy or incomplete brain networks

    Get PDF
    open6siCommunity structure, or "modularity," is a fundamentally important aspect in the organization of structural and functional brain networks, but their identification with community detection methods is confounded by noisy or missing connections. Although several methods have been used to account for missing data, the performance of these methods has not been compared quantitatively so far. In this study, we compared four different approaches to account for missing connections when identifying modules in binary and weighted networks using both Louvain and Infomap community detection algorithms. The four methods are "zeros," "row-column mean," "common neighbors," and "consensus clustering." Using Lancichinetti-Fortunato-Radicchi benchmark-simulated binary and weighted networks, we find that "zeros," "row-column mean," and "common neighbors" approaches perform well with both Louvain and Infomap, whereas "consensus clustering" performs well with Louvain but not Infomap. A similar pattern of results was observed with empirical networks from stereotactical electroencephalography data, except that "consensus clustering" outperforms other approaches on weighted networks with Louvain. Based on these results, we recommend any of the four methods when using Louvain on binary networks, whereas "consensus clustering" is superior with Louvain clustering of weighted networks. When using Infomap, "zeros" or "common neighbors" should be used for both binary and weighted networks. These findings provide a basis to accounting for noisy or missing connections when identifying modules in brain networks.openWilliams N.; Arnulfo G.; Wang S.H.; Nobili L.; Palva S.; Palva J.M.Williams, N.; Arnulfo, G.; Wang, S. H.; Nobili, L.; Palva, S.; Palva, J. M

    Subthalamic oscillatory activity and connectivity during gait in Parkinson's disease

    Get PDF
    Local field potentials (LFP) of the subthalamic nucleus (STN) recorded during walking may provide clues for determining the function of the STN during gait and also, may be used as biomarker to steer adaptive brain stimulation devices. Here, we present LFP recordings from an implanted sensing neurostimulator (Medtronic Activa PC+S) during walking and rest with and without stimulation in 10 patients with Parkinson's disease and electrodes placed bilaterally in the STN. We also present recordings from two of these patients recorded with externalized leads. We analyzed changes in overall frequency power, bilateral connectivity, high beta frequency oscillatory characteristics and gait-cycle related oscillatory activity. We report that deep brain stimulation improves gait parameters. High beta frequency power (20-30 Hz) and bilateral oscillatory connectivity are reduced during gait, while the attenuation of high beta power is absent during stimulation. Oscillatory characteristics are affected in a similar way. We describe a reduction in overall high beta burst amplitude and burst lifetimes during gait as compared to rest off stimulation. Investigating gait cycle related oscillatory dynamics, we found that alpha, beta and gamma frequency power is modulated in time during gait, locked to the gait cycle. We argue that these changes are related to movement induced artifacts and that these issues have important implications for similar research
    corecore