8,763 research outputs found

    Phase Transitions in Sparse PCA

    Full text link
    We study optimal estimation for sparse principal component analysis when the number of non-zero elements is small but on the same order as the dimension of the data. We employ approximate message passing (AMP) algorithm and its state evolution to analyze what is the information theoretically minimal mean-squared error and the one achieved by AMP in the limit of large sizes. For a special case of rank one and large enough density of non-zeros Deshpande and Montanari [1] proved that AMP is asymptotically optimal. We show that both for low density and for large rank the problem undergoes a series of phase transitions suggesting existence of a region of parameters where estimation is information theoretically possible, but AMP (and presumably every other polynomial algorithm) fails. The analysis of the large rank limit is particularly instructive.Comment: 6 pages, 3 figure

    Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization

    Full text link
    We study the problem of detecting a structured, low-rank signal matrix corrupted with additive Gaussian noise. This includes clustering in a Gaussian mixture model, sparse PCA, and submatrix localization. Each of these problems is conjectured to exhibit a sharp information-theoretic threshold, below which the signal is too weak for any algorithm to detect. We derive upper and lower bounds on these thresholds by applying the first and second moment methods to the likelihood ratio between these "planted models" and null models where the signal matrix is zero. Our bounds differ by at most a factor of root two when the rank is large (in the clustering and submatrix localization problems, when the number of clusters or blocks is large) or the signal matrix is very sparse. Moreover, our upper bounds show that for each of these problems there is a significant regime where reliable detection is information- theoretically possible but where known algorithms such as PCA fail completely, since the spectrum of the observed matrix is uninformative. This regime is analogous to the conjectured 'hard but detectable' regime for community detection in sparse graphs.Comment: For sparse PCA and submatrix localization, we determine the information-theoretic threshold exactly in the limit where the number of blocks is large or the signal matrix is very sparse based on a conditional second moment method, closing the factor of root two gap in the first versio

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics

    X-Ray and UV Orbital Phase Dependence in LMC X-3

    Get PDF
    The black-hole binary LMC X-3 is known to be variable on time scales of days to years. We investigate X-ray and ultraviolet variability in the system as a function of the 1.7 day binary phase using a 6.4 day observation with the Rossi X-ray Timing Explorer (RXTE) from December 1998. An abrupt 14% flux decrease, lasting nearly an entire orbit, is followed by a return to previous flux levels. This behavior occurs twice, at nearly the same binary phase, but it is not present in consecutive orbits. When the X-ray flux is at lower intensity, a periodic amplitude modulation of 7% is evident in data folded modulo the orbital period. The higher intensity data show weaker correlation with phase. This is the first report of X-ray variability at the orbital period of LMC X-3. Archival RXTE observations of LMC X--3 during a high flux state in December 1996 show similar phase dependence. An ultraviolet light curve obtained with the High Speed Photometer aboard the Hubble Space Telescope shows orbital modulation consistent with that in the optical, caused by the ellipsoidal variation of the spatially deformed companion. The X-ray spectrum of LMC X-3 can be acceptably represented by a phenomenological disk-black-body plus a power law. Changes in the spectrum of LMC X-3 during our observations are compatible with earlier observations during which variations in the 2-10 keV flux are tracked closely by the disk geometry spectral model parameter.Comment: 11 pages, 7 figures, ApJ in pres

    Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula

    Full text link
    Factorizing low-rank matrices has many applications in machine learning and statistics. For probabilistic models in the Bayes optimal setting, a general expression for the mutual information has been proposed using heuristic statistical physics computations, and proven in few specific cases. Here, we show how to rigorously prove the conjectured formula for the symmetric rank-one case. This allows to express the minimal mean-square-error and to characterize the detectability phase transitions in a large set of estimation problems ranging from community detection to sparse PCA. We also show that for a large set of parameters, an iterative algorithm called approximate message-passing is Bayes optimal. There exists, however, a gap between what currently known polynomial algorithms can do and what is expected information theoretically. Additionally, the proof technique has an interest of its own and exploits three essential ingredients: the interpolation method introduced in statistical physics by Guerra, the analysis of the approximate message-passing algorithm and the theory of spatial coupling and threshold saturation in coding. Our approach is generic and applicable to other open problems in statistical estimation where heuristic statistical physics predictions are available
    corecore