619 research outputs found

    Reweighted belief propagation and quiet planting for random K-SAT

    Full text link
    We study the random K-satisfiability problem using a partition function where each solution is reweighted according to the number of variables that satisfy every clause. We apply belief propagation and the related cavity method to the reweighted partition function. This allows us to obtain several new results on the properties of random K-satisfiability problem. In particular the reweighting allows to introduce a planted ensemble that generates instances that are, in some region of parameters, equivalent to random instances. We are hence able to generate at the same time a typical random SAT instance and one of its solutions. We study the relation between clustering and belief propagation fixed points and we give a direct evidence for the existence of purely entropic (rather than energetic) barriers between clusters in some region of parameters in the random K-satisfiability problem. We exhibit, in some large planted instances, solutions with a non-trivial whitening core; such solutions were known to exist but were so far never found on very large instances. Finally, we discuss algorithmic hardness of such planted instances and we determine a region of parameters in which planting leads to satisfiable benchmarks that, up to our knowledge, are the hardest known.Comment: 23 pages, 4 figures, revised for readability, stability expression correcte

    Induction of Interpretable Possibilistic Logic Theories from Relational Data

    Full text link
    The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.Comment: Longer version of a paper appearing in IJCAI 201

    Formal Computational Unlinkability Proofs of RFID Protocols

    Full text link
    We set up a framework for the formal proofs of RFID protocols in the computational model. We rely on the so-called computationally complete symbolic attacker model. Our contributions are: i) To design (and prove sound) axioms reflecting the properties of hash functions (Collision-Resistance, PRF); ii) To formalize computational unlinkability in the model; iii) To illustrate the method, providing the first formal proofs of unlinkability of RFID protocols, in the computational model

    Using Program Synthesis for Program Analysis

    Get PDF
    In this paper, we identify a fragment of second-order logic with restricted quantification that is expressive enough to capture numerous static analysis problems (e.g. safety proving, bug finding, termination and non-termination proving, superoptimisation). We call this fragment the {\it synthesis fragment}. Satisfiability of a formula in the synthesis fragment is decidable over finite domains; specifically the decision problem is NEXPTIME-complete. If a formula in this fragment is satisfiable, a solution consists of a satisfying assignment from the second order variables to \emph{functions over finite domains}. To concretely find these solutions, we synthesise \emph{programs} that compute the functions. Our program synthesis algorithm is complete for finite state programs, i.e. every \emph{function} over finite domains is computed by some \emph{program} that we can synthesise. We can therefore use our synthesiser as a decision procedure for the synthesis fragment of second-order logic, which in turn allows us to use it as a powerful backend for many program analysis tasks. To show the tractability of our approach, we evaluate the program synthesiser on several static analysis problems.Comment: 19 pages, to appear in LPAR 2015. arXiv admin note: text overlap with arXiv:1409.492
    • …
    corecore