760 research outputs found

    Phase semantics for light linear logic

    Get PDF
    AbstractLight linear logic (Girard, Inform. Comput. 14 (1998) 175–204) is a refinement of the propositions-as-types paradigm to polynomial-time computation. A semantic setting for the underlying logical system is introduced here in terms of fibred phase spaces. Strong completeness is established, with a purely semantic proof of cut elimination as a consequence. A number of mathematical examples of fibred phase spaces are presented that illustrate subtleties of light linear logic

    Phase semantics and decidability of elementary affine logic

    Get PDF
    AbstractLight, elementary and soft linear logics are formal systems derived from Linear Logic, enjoying remarkable normalization properties. In this paper, we prove decidability of Elementary Affine Logic, EAL. The result is obtained by semantical means, first defining a class of phase models for EAL and then proving soundness and (strong) completeness, following Okada's technique. Phase models for Light Affine Logic and Soft Linear Logic are also defined and shown complete

    TR-2007017: Linear Logic with Explicit Resources

    Full text link

    Normalization by Completeness with Heyting Algebras

    Get PDF
    International audienceUsual normalization by evaluation techniques have a strong relationship with completeness with respect to Kripke structures. But Kripke structures is not the only semantics that ts intuitionistic logic: Heyting algebras are a more algebraic alternative.In this paper, we focus on this less investigated area: how completeness with respect to Heyting algebras generate a normalization algorithm for a natural deduction calculus, in the propositional fragment. Our main contributions is that we prove in a direct way completeness of natural deduction with respect to Heyting algebras, that the underlying algorithm natively deals with disjunction, that we formalized those proofs in Coq, and give an extracted algorithm

    Phase semantic cut-elimination and normalization proofs of first- and higher-order linear logic

    Get PDF
    AbstractWe give a natural extension of Girard's phase semantic completeness proof of the (first order) linear logic Girard (Theoret. Comput. Sci., 1987) to a phase semantic cut-elimination proof. Then we extend this idea to a phase semantic cut-elimination proof for higher order linear logic. We also extend the phase semantics for provability to a phase semantics-like framework for proofs, by modifying the phase space of monoid domain to that of proof-structures (untyped proofs) domain, in a natural way. The resulting phase semantic-like framework for proofs provides various versions of proof-normalization theorem

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers

    A Systematic Approach to Canonicity in the Classical Sequent Calculus

    Get PDF
    International audienceThe sequent calculus is often criticized for requiring proofs to contain large amounts of low-level syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, sequent proofs can separate closely related steps---such as instantiating a block of quantifiers---by irrelevant noise. Moreover, the sequential nature of sequent proofs forces proof steps that are syntactically non-interfering and permutable to nevertheless be written in some arbitrary order. The sequent calculus thus lacks a notion of canonicity: proofs that should be considered essentially the same may not have a common syntactic form. To fix this problem, many researchers have proposed replacing the sequent calculus with proof structures that are more parallel or geometric. Proof-nets, matings, and atomic flows are examples of such revolutionary formalisms. We propose, instead, an evolutionary approach to recover canonicity within the sequent calculus, which we illustrate for classical first-order logic. The essential element of our approach is the use of a multi-focused sequent calculus as the means of abstracting away the details from classical cut-free sequent proofs. We show that, among the multi-focused proofs, the maximally multi-focused proofs that make the foci as parallel as possible are canonical. Moreover, such proofs are isomorphic to expansion proofs---a well known, minimalistic, and parallel generalization of Herbrand disjunctions---for classical first-order logic. This technique is a systematic way to recover the desired essence of any sequent proof without abandoning the sequent calculus

    MacNeille Completion and Buchholz\u27 Omega Rule for Parameter-Free Second Order Logics

    Get PDF
    Buchholz\u27 Omega-rule is a way to give a syntactic, possibly ordinal-free proof of cut elimination for various subsystems of second order arithmetic. Our goal is to understand it from an algebraic point of view. Among many proofs of cut elimination for higher order logics, Maehara and Okada\u27s algebraic proofs are of particular interest, since the essence of their arguments can be algebraically described as the (Dedekind-)MacNeille completion together with Girard\u27s reducibility candidates. Interestingly, it turns out that the Omega-rule, formulated as a rule of logical inference, finds its algebraic foundation in the MacNeille completion. In this paper, we consider a family of sequent calculi LIP = cup_{n >= -1} LIP_n for the parameter-free fragments of second order intuitionistic logic, that corresponds to the family ID_{<omega} = cup_{n <omega} ID_n of arithmetical theories of inductive definitions up to omega. In this setting, we observe a formal connection between the Omega-rule and the MacNeille completion, that leads to a way of interpreting second order quantifiers in a first order way in Heyting-valued semantics, called the Omega-interpretation. Based on this, we give a (partly) algebraic proof of cut elimination for LIP_n, in which quantification over reducibility candidates, that are genuinely second order, is replaced by the Omega-interpretation, that is essentially first order. As a consequence, our proof is locally formalizable in ID-theories
    • …
    corecore