25,476 research outputs found

    Evoked Patterns of Oscillatory Activity in Mean-Field Neuronal Networks

    Get PDF
    Oscillatory behaviors in populations of neurons are oberved in diverse contexts. In tasks involving working memory, a form of short-term memory, oscillations in different frequency bands have been shown to increase across varying spatial scales using recording methods such as EEG (electroencephalogram) and MEG (magnetoencephalogram). Such oscillatory activity has also been observed in the context of neural binding, where different features of objects that are perceived or recalled are associated with one another. These sets of data suggest that oscillatory dynamics may also play a key role in the maintenance and manipulation of items in working memory. Using similar recording techniques, including EEG and MEG, oscillatory neuronal activity has also been seen to occur when certain images that cause aversion and headaches in healthy human subjects or seizures in those with pattern-sensitive epilepsy are presented. The images most likely to cause such responses are those with dominant spatial frequencies near 3--5 cycles per degree, the same band of wavenumbers to which normal human vision exhibits the greatest contrast sensitivity. We model these oscillatory behaviors using mean-field, Wilson-Cowan-type neuronal networks. In the case of working memory and binding, we find that including the activity of certain long-lasting excitatory synapses in addition to the usual inhibitory and shorter-term excitatory synaptic activity allows for bistability between a low steady state and a high oscillatory state. By coupling several such populations together, both in-phase and out-of-phase oscillations arise, corresponding to distinct and bound items in working memory, respectively. We analyze the network's dynamics and dependence on biophysically relevant parameters using a combination of techniques, including numerical bifurcation analysis and weak coupling theory. In the case of spatially resonant responses to static simtuli, we employ Wilson-Cowan networks extended in one and two spatial dimensions. By placing the networks near Turing-Hopf bifurcations, we find they exhibit spatial resonances that compare well with empirical results. Using simulations, numerical bifurcation analysis, and perturbation theory, we characterize the observed dynamics and gain mathematical insight into the mechanisms that lead to these dynamics

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    Observation of optically addressable nonvolatile memory in VO<sub>2</sub> at room temperature

    Get PDF
    Vanadium dioxide (VO2) is a phase change material that can reversibly change between high and low resistivity states through electronic and structural phase transitions. Thus far, VO2 memory devices have essentially been volatile at room temperature, and nonvolatile memory has required non-ambient surroundings (e.g., elevated temperatures, electrolytes) and long write times. For the first time, here, the authors report the observation of optically addressable nonvolatile memory in VO2 at room temperature with a readout by voltage oscillations. The read and write times have to be kept shorter than about 150 µs. The writing of the memory and onset of the voltage oscillations have a minimum optical power threshold. Although the physical mechanisms underlying this memory effect require further investigations, this discovery illustrates the potential of VO2 for new computing devices and architectures, such as artificial neurons and oscillatory neural networks

    Synchronized Oscillations During Cooperative Feature Linking in a Cortical Model of Visual Perception

    Full text link
    A neural network model of synchronized oscillator activity in visual cortex is presented in order to account for recent neurophysiological findings that such synchronization may reflect global properties of the stimulus. In these recent experiments, it was reported that synchronization of oscillatory firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred between neurons separated by several cortical columns (several mm of cortex) when these neurons shared some receptive field preferences specific to the stimuli. These results were obtained not only for single bar stimuli but also across two disconnected, but colinear, bars moving in the same direction. Our model and computer simulations obtain these synchrony results across both single and double bar stimuli. For the double bar case, synchronous oscillations are induced in the region between the bars, but no oscillations are induced in the regions beyond the stimuli. These results were achieved with cellular units that exhibit limit cycle oscillations for a robust range of input values, but which approach an equilibrium state when undriven. Single and double bar synchronization of these oscillators was achieved by different, but formally related, models of preattentive visual boundary segmentation and attentive visual object recognition, as well as nearest-neighbor and randomly coupled models. In preattentive visual segmentation, synchronous oscillations may reflect the binding of local feature detectors into a globally coherent grouping. In object recognition, synchronous oscillations may occur during an attentive resonant state that triggers new learning. These modelling results support earlier theoretical predictions of synchronous visual cortical oscillations and demonstrate the robustness of the mechanisms capable of generating synchrony.Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (90-0083); National Aeronautics and Space Administration (NGT-50497

    Rhythmic inhibition allows neural networks to search for maximally consistent states

    Full text link
    Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits yet its computational role still remains elusive. We show that a model of Gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multi-stability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework which can be used to model other 'perceptual inference' phenomena

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks

    Get PDF
    We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stablecprecise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units
    corecore