6,685,834 research outputs found

    Phase Synchronization Operator for On-Chip Brain Functional Connectivity Computation

    Get PDF
    This paper presents an integer-based digital processor for the calculation of phase synchronization between two neural signals. It is based on the measurement of time periods between two consecutive minima. The simplicity of the approach allows for the use of elementary digital blocks, such as registers, counters, and adders. The processor, fabricated in a 0.18- μ m CMOS process, only occupies 0.05 mm 2 and consumes 15 nW from a 0.5 V supply voltage at a signal input rate of 1024 S/s. These low-area and low-power features make the proposed processor a valuable computing element in closed-loop neural prosthesis for the treatment of neural disorders, such as epilepsy, or for assessing the patterns of correlated activity in neural assemblies through the evaluation of functional connectivity maps.Ministerio de Economía y Competitividad TEC2016-80923-POffice of Naval Research (USA) N00014-19-1-215

    Phase

    Get PDF

    Ranking strategies to support toxicity prediction: a case study on potential LXR binders

    Get PDF
    The current paradigm of toxicity testing is set within a framework of Mode-of-Action (MoA)/Adverse Outcome Pathway (AOP) investigations, where novel methodologies alternative to animal testing play a crucial role, and allow to consider causal links between molecular initiating events (MIEs), further key events and an adverse outcome. In silico (computational) models are developed to support toxicity assessment within the MoA/AOP framework. This paper focuses on the evaluation of potential binding to the Liver X Receptor (LXR), as this has been identified among the MIEs leading to liver steatosis within an AOP framework addressing repeated dose and target-organ toxicity
    corecore