4,814 research outputs found

    Plasmodial Hsp40s: New avenues for antimalarial drug discovery

    Get PDF
    Malaria, an infectious disease caused by Plasmodium spp, is one of the world\u27s most dangerous diseases, accounting for more than half a million deaths yearly. The long years of co-habitation between the parasite and its hosts (human and mosquito), is a testimony to the parasite’s ability to escape the immune system and develop drug resistance mechanisms. Currently, an important search area for improved pharmacotherapy are molecular chaperones of the heat shock protein family, abundant in Plasmodium falciparum and contributing to its continuous survival and development. Thus far, small molecule inhibitor studies on P. falciparum Hsp70s and Hsp90s have indicated that they are promising antimalarial targets. However, not much attention has been given to Hsp40s as potential antimalarial drug targets. Hsp40s are known to function as chaperones by preventing protein aggregation, and as co-chaperones, by regulating the chaperone activities of Hsp70s to ensure proper protein folding. There are only a limited number of reviews on Hsp40s as drug targets, and the few reviews on plasmodial Hsp40s tend to focus largely on the intra-erythrocytic stage of the parasite life cycle. Therefore, this review will summarize what is known about Hsp40s throughout the malaria parasite life cycle, and critically evaluate their potential to serve as new avenues for antimalarial drug discovery

    Conformationally-Locked C-Glycosides: Tuning Aglycone Interactions for Optimal Cheperone Behaviour in Gaucher Fibroblasts

    Get PDF
    A series of conformationally locked C-glycosides based on the 3-aminopyrano[3,2-b]pyrrol-2(1H)-one (APP) scaffold has been synthesized. The key step involved a totally stereocontrolled C-Michael addition of a serine-equivalent C-nucleophile to tri-O-benzyl-2-nitro-D-galactal, previously published by the authors. Stereoselective transformations of the Michael adduct allowed us the synthesis of compounds with mono- or diantennated aglycone moieties and different topologies. In vitro screening showed highly selective inhibition of bovine liver β-glucosidase/β-galactosidase and specific inhibition of human β-glucocerebrosidase among lysosomal glycosidases for compounds bearing palmitoyl chains in the aglycone, with a marked dependence of the inhibition potency upon their number and location. Molecular dynamics simulations highlighted the paramount importance of an optimal orientation of the hydrophobic substituent to warrant efficient non-glycone interactions, which are critical for the binding affinity. The results provide a rationale for the strong decrease of the inhibition potency of APP compounds on going from neutral to acidic pH. The best candidate was found to behave as pharmacological chaperone in Gaucher fibroblasts with homozygous N370S and F213I mutations, with enzyme activity enhancements similar to those encountered for the reference compound AmbroxolMinisterio de Economía y Competitividad CTQ2012-36365, SAF2013-44021-RJunta de Andalucía FQM-1467European Union Seventh Framework Programme FP7-People-2012-CI

    Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease

    Get PDF
    Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease

    Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management.

    Get PDF
    Mucopolysaccharidosis type IVA (MPS IVA, or Morquio syndrome type A) is an inherited metabolic lysosomal disease caused by the deficiency of the N-acetylglucosamine-6-sulfate sulfatase enzyme. The deficiency of this enzyme accumulates the specific glycosaminoglycans (GAG), keratan sulfate, and chondroitin-6-sulfate mainly in bone, cartilage, and its extracellular matrix. GAG accumulation in these lesions leads to unique skeletal dysplasia in MPS IVA patients. Clinical, radiographic, and biochemical tests are needed to complete the diagnosis of MPS IVA since some clinical characteristics in MPS IVA are overlapped with other disorders. Early and accurate diagnosis is vital to optimizing patient management, which provides a better quality of life and prolonged life-time in MPS IVA patients. Currently, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for patients with MPS IVA. However, ERT and HSCT do not have enough impact on bone and cartilage lesions in patients with MPS IVA. Penetrating the deficient enzyme into an avascular lesion remains an unmet challenge, and several innovative therapies are under development in a preclinical study. In this review article, we comprehensively describe the current diagnosis, treatment, and management for MPS IVA. We also illustrate developing future therapies focused on the improvement of skeletal dysplasia in MPS IVA

    Pharmacological chaperone therapy for Gaucher disease: A patent review

    Get PDF
    Introduction: Mutations in the gene encoding for acid β-glucosidase (β-glucocerebrosidase, GlcCerase) are seen in Gaucher disease (GD), which give rise to significant protein misfolding effects and result in progressive accumulation of glucosyl ceramide. The main treatment for GD is enzyme replacement therapy (ERT). The iminosugar glycosidase inhibitor N-(n-butyl)-1-deoxynojirimycin (miglustat, Zavesca™) is used in a second treatment modality known as substrate reduction therapy. At the beginning of the 21st century, a third therapeutic paradigm was launched, namely, pharmacological chaperone therapy (PCT). This therapeutic strategy relies on the capability of such inhibitors to promote the correct folding and stabilize mutant forms of lysosomal enzymes, such as GlcCerase, as they pass through the secretory pathway. Areas covered: This review summarizes the different approaches used to implement the concept of PCT for GD. It discusses the relevant research, patents and patent applications filed in the last decade. Expert opinion: While the significance of PCT remains a matter of debate, the great interest gathered regarding it in a relatively few years reflects its broad potential scope, well beyond GD. The fact that pharmacological chaperones can be designed to cross the blood brain barrier (BBB) make them candidates for the treatment of neuronopathic forms of GD that are not responsive to ERT. Combined therapies offer even broader possibilities that deserve to be fully explored.Ministerio de Ciencia e Innovación CTQ2007-61180/PPQ, SAF2010-15670Junta de Andalucía P08-FQM-0371

    Chemical Chaperones Improve Protein Secretion and Rescue Mutant Factor VIII in Mice with Hemophilia A.

    Get PDF
    nefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII), which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX) plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P). We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking
    corecore