141 research outputs found

    GPU-accelerated voxelwise hepatic perfusion quantification

    Full text link
    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using compute unified device architecture-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, nonlinear least-squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626 400 voxels in a patient's liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10 −6 . The method will be useful for generating liver perfusion images in clinical settings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98596/1/0031-9155_57_17_5601.pd

    GAN and dual‐input two‐compartment model‐based training of a neural network for robust quantification of contrast uptake rate in gadoxetic acid‐enhanced MRI

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154967/1/mp14055_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154967/2/mp14055.pd

    Accelerated Dynamic Magnetic Resonance Imaging from Spatial-Subspace Reconstructions (SPARS)

    Full text link
    Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) ideally requires a high spatial and high temporal resolution, but hardware limitations prevent acquisitions from simultaneously achieving both. Existing image reconstruction techniques can artificially create spatial resolution at a given temporal resolution by estimating data that is not acquired, but, ultimately, spatial details are sacrificed at very high acceleration rates. The purpose of this paper is to introduce the concept of spatial subspace reconstructions (SPARS) and demonstrate its ability to reconstruct high spatial resolution dynamic images from as few as one acquired radial spoke per dynamic frame. Briefly, a low-temporal-high-spatial resolution organization of the acquired raw data is used to estimate a spatial subspace in which the high-temporal-high-spatial ground truth data resides. This subspace is then used to estimate entire images from single k-space spokes. In both simulated and human in-vivo data, the proposed SPARS reconstruction method outperformed standard GRASP and GRASP-Pro reconstruction, providing a shorter reconstruction time and yielding higher accuracy from both a spatial and temporal perspective.Comment: Submitted to Frontiers in Imagin

    Adaption in Dynamic Contrast-Enhanced MRI

    Get PDF
    In breast DCE MRI, dynamic data are acquired to assess signal changes caused by contrast agent injection in order to classify lesions. Two approaches are used for data analysis. One is to fit a pharmacokinetic model, such as the Tofts model, to the data, providing physiological information. For accurate model fitting, fast sampling is needed. Another approach is to evaluate architectural features of the contrast agent distribution, for which high spatial resolution is indispensable. However, high temporal and spatial resolution are opposing aims and a compromise has to be found. A new area of research are adaptive schemes, which sample data at combined resolutions to yield both, accurate model fitting and high spatial resolution morphological information. In this work, adaptive sampling schemes were investigated with the objective to optimize fitting accuracy, whilst providing high spatial resolution images. First, optimal sampling design was applied to the Tofts model. By that it could be determined, based on an assumed parameter distribution, that time points during the onset and the initial fast kinetics, lasting for approximately two minutes, are most relevant for fitting. During this interval, fast sampling is required. Later time points during wash-out can be exploited for high spatial resolution images. To achieve fast sampling during the initial kinetics, data acquisition has to be accelerated. A common way to increase imaging speed is to use view-sharing methods, which omit certain k-space data and interpolate the missing data from neighboring time frames. In this work, based on phantom simulations, the influence of different view-sharing techniques during the initial kinetics on fitting accuracy was investigated. It was found that all view-sharing methods imposed characteristic systematic errors on the fitting results of Ktrans. The best fitting performance was achieved by the scheme ``modTRICKS'', which is a combination of the often used schemes keyhole and TRICKS. It is not known prior to imaging, when the contrast agent will arrive in the lesion or when the wash-out begins. Currently used adaptive sequences change resolutions a fixed time points. However, missing time points on the upslope may cause fitting errors and missing the signal peak may lead to a loss in morphological information. This problem was addressed with a new automatic resolution adaption (AURA) sequence. Acquired dynamic data were analyzed in real-time to find the onset and the beginning of the wash-out and consequently the temporal resolution was automatically adapted. Using a perfusion phantom it could be shown that AURA provides both, high fitting accuracy and reliably high spatial resolution images close to the signal peak. As alternative approach to AURA, a sequence which allows for retrospective resolution adaption, was assesses. Advantages are that adaption does not have to be a global process, and can be tailored regionally to local sampling requirements. This can be useful for heterogeneous lesions. For that, a 3D golden angle radial sequence was used, which acquires contrast information with each line and the golden angles allow arbitrary resolutions at arbitrary time points. Using a perfusion phantom, it could be shown that retrospective resolution adaption yields high fitting accuracy and relatively high spatial resolution maps
    corecore