479 research outputs found

    Polynomial-time Solvable #CSP Problems via Algebraic Models and Pfaffian Circuits

    Full text link
    A Pfaffian circuit is a tensor contraction network where the edges are labeled with changes of bases in such a way that a very specific set of combinatorial properties are satisfied. By modeling the permissible changes of bases as systems of polynomial equations, and then solving via computation, we are able to identify classes of 0/1 planar #CSP problems solvable in polynomial-time via the Pfaffian circuit evaluation theorem (a variant of L. Valiant's Holant Theorem). We present two different models of 0/1 variables, one that is possible under a homogeneous change of basis, and one that is possible under a heterogeneous change of basis only. We enumerate a series of 1,2,3, and 4-arity gates/cogates that represent constraints, and define a class of constraints that is possible under the assumption of a ``bridge" between two particular changes of bases. We discuss the issue of planarity of Pfaffian circuits, and demonstrate possible directions in algebraic computation for designing a Pfaffian tensor contraction network fragment that can simulate a swap gate/cogate. We conclude by developing the notion of a decomposable gate/cogate, and discuss the computational benefits of this definition

    A Pfaffian formula for monomer-dimer partition functions

    Full text link
    We consider the monomer-dimer partition function on arbitrary finite planar graphs and arbitrary monomer and dimer weights, with the restriction that the only non-zero monomer weights are those on the boundary. We prove a Pfaffian formula for the corresponding partition function. As a consequence of this result, multipoint boundary monomer correlation functions at close packing are shown to satisfy fermionic statistics. Our proof is based on the celebrated Kasteleyn theorem, combined with a theorem on Pfaffians proved by one of the authors, and a careful labeling and directing procedure of the vertices and edges of the graph.Comment: Added referenc

    Even circuits of prescribed clockwise parity

    Full text link
    We show that a graph has an orientation under which every circuit of even length is clockwise odd if and only if the graph contains no subgraph which is, after the contraction of at most one circuit of odd length, an even subdivision of K_{2,3}. In fact we give a more general characterisation of graphs that have an orientation under which every even circuit has a prescribed clockwise parity. This problem was motivated by the study of Pfaffian graphs, which are the graphs that have an orientation under which every alternating circuit is clockwise odd. Their significance is that they are precisely the graphs to which Kasteleyn's powerful method for enumerating perfect matchings may be applied

    Permanents, Pfaffian orientations, and even directed circuits

    Full text link
    Given a 0-1 square matrix A, when can some of the 1's be changed to -1's in such a way that the permanent of A equals the determinant of the modified matrix? When does a real square matrix have the property that every real matrix with the same sign pattern (that is, the corresponding entries either have the same sign or are both zero) is nonsingular? When is a hypergraph with n vertices and n hyperedges minimally nonbipartite? When does a bipartite graph have a "Pfaffian orientation"? Given a digraph, does it have no directed circuit of even length? Given a digraph, does it have a subdivision with no even directed circuit? It is known that all of the above problems are equivalent. We prove a structural characterization of the feasible instances, which implies a polynomial-time algorithm to solve all of the above problems. The structural characterization says, roughly speaking, that a bipartite graph has a Pfaffian orientation if and only if it can be obtained by piecing together (in a specified way) planar bipartite graphs and one sporadic nonplanar bipartite graph.Comment: 47 pages, published versio

    On the expressive power of planar perfect matching and permanents of bounded treewidth matrices

    Get PDF
    Valiant introduced some 25 years ago an algebraic model of computation along with the complexity classes VP and VNP, which can be viewed as analogues of the classical classes P and NP. They are defined using non-uniform sequences of arithmetic circuits and provides a framework to study the complexity for sequences of polynomials. Prominent examples of difficult (that is, VNP-complete) problems in this model includes the permanent and hamiltonian polynomials. While the permanent and hamiltonian polynomials in general are difficult to evaluate, there have been research on which special cases of these polynomials admits efficient evaluation. For instance, Barvinok has shown that if the underlying matrix has bounded rank, both the permanent and the hamiltonian polynomials can be evaluated in polynomial time, and thus are in VP. Courcelle, Makowsky and Rotics have shown that for matrices of bounded treewidth several difficult problems (including evaluating the permanent and hamiltonian polynomials) can be solved efficiently. An earlier result of this flavour is Kasteleyn's theorem which states that the sum of weights of perfect matchings of a planar graph can be computed in polynomial time, and thus is in VP also. For general graphs this problem is VNP-complete. In this paper we investigate the expressive power of the above results. We show that the permanent and hamiltonian polynomials for matrices of bounded treewidth both are equivalent to arithmetic formulas. Also, arithmetic weakly skew circuits are shown to be equivalent to the sum of weights of perfect matchings of planar graphs.Comment: 14 page
    corecore