115 research outputs found

    Neoproterozoic subduction along the Ailaoshan zone, South China : geochronological and geochemical evidence from amphibolite

    Get PDF
    This study was supported by China Natural Science Foundation (41190073 and 41372198), National Basic Research Program of China (2014CB440901) and Natural Environment Research Council (grant NE/J021822/1).Lenses of amphibolites occur along the Ailaoshan suture zone at the southwestern margin of the Yangtze Block, South China. Petrological, geochemical and zircon U-Pb geochronological data indicate that they are divisible into two coeval groups. Group 1, represented by the Jinping amphibolite, has mg-number of 71-76 and (La/Yb)cn ratios of 7.2-7.7, and displays a geochemical affinity to island arc volcanic rocks. Group 2 amphibolites occur at Yuanyang and are characterized by high Nb contents (14.3-18.4 ppm), resembling Nb-enriched basalts. The epsilon(Nd)(t) values for Group 1 range from -3.45 to -2.04 and for Group 2 from +4.08 to +4.39. A representative sample for Group 1 yields a U-Pb zircon age of 803 7 Ma, whereas two samples for Group 2 give U-Pb zircon ages of 813 +/- 11 Ma and 814 +/- 12 Ma. Petrogenetic analysis suggests that Group 1 originated from an orthopyroxene-rich source and Group 2 from a mantle wedge modified by slab-derived melt. In combination with other geological observations, these amphibolites are inferred to constitute part of an early Neoproterozoic (similar to 815-800 Ma) arc-back-arc basin system. The Neoproterozoic amphibolites and related rocks along the Ailaoshan zone may be the southward extension of the Neoproterozoic supra-subduction zone that developed along the western margin of the Yangtze Block. (C) 2014 Elsevier B.V. All rights reserved.PostprintPeer reviewe

    Neoproterozoic crustal growth of the Southern Yangtze Block : Geochemical and zircon U–Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone

    Get PDF
    This study was supported by National Natural Science Foundation of China (41190073 and 41372198), National Basic Research Program of China (2014CB440901), Basic Operation Expense of Sun Yat-Sen University and Startup Foundation for Doctors of Guilin University of Technology (002401003475).Abstract Neoproterozoic felsic igneous rocks associated with mafic-ultramafic bodies along the margins of the Yangtze Block, South China, can be used to constrain the continental crustal growth and secular evolution of the region. LA-ICPMS zircon U-Pb dating of the Adebo quartz diorite pluton in the Ailaoshan tectonic zone on the southern margin of the Yangtze Block gives the Neoproterozoic age of 800 ± 7 Ma and ɛHf(t) values in the range of -1.03 to +3.75 with two-stage model age of 1.3-1.6 Ga. The pluton is characterized by relatively low SiO2 (60.97-64.41 wt. %) and total alkalis (K2O + Na2O, 7.35-9.14 wt. %) and high Al2O3 content (16.98-18.21 wt. %) with mg-number of 36-39. REE-normalized patterns show enrichment in LREE with (La/Yb)cn of 11.36 to 19.77 and Europium negative anomalies with Eu/Eu* = 0.61- 0.74. The samples are characterized by negative Nb-Ta ((Nb/La)n = 0.18-0.35) and P, Ti, Sr anomalies and high Y concentrations (33.79-41.04 ppm) and low Sr/Y ratios (5.65-10.16). Their isotopic composition are similar to those of the Neoproterozoic mafic igneous rocks in the Ailaoshan zone and the southwestern Yangtze Block, indicating that the quartz diorite was produced by partial melting of mafic lower crust. The diorite also shows the similar geochemical characteristics with adakitic rocks from thickened lower crust or amphibolite and eclogite experimental melts. In combination with their arc-related geochemical signatures and synchronous developed adakitic rocks in the region, the Adebo quartz diorite pluton might be produced in a subduction-related tectonic setting during Neoproterozoic crustal growth along the margins of Yangtze Block.PostprintPeer reviewe

    Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China)

    Get PDF
    Zircon U–Pb and Lu–Hf isotopic data along with whole-rock elemental and Sr–Nd isotopic analytical results for the Xin'anzhai and Tongtiange granitic plutons in the Ailaoshan suture zone record the transition from subduction to collision associated with the accretion of Indochina to Yangtze Blocks. The Xin'anzhai monzogranite yields zircon U–Pb age of 251.6 ± 2.0 Ma and ΔHf(t) values of − 6.2– − 9.8. The Tongtiange leucogranite gives zircon U–Pb age of 247.5 ± 2.2 Ma and ΔHf(t) values ranging from − 3.1 to − 11.1. The Tongtiange leucogranites have lower MgO, Na2O, CaO, FeOt and TiO2 contents but higher A/CNK values than those of the Xin'anzhai monzogranites. The ΔNd(t) values for Xin'anzhai and Tongtiange plutons are in the range of − 8.5 to − 8.8 and − 10.6 to − 11.4, respectively, similar to those of the Ailaoshan metamorphic basement. The Tongtiange leucogranites are the product of dehydration melting of mica-rich metasedimentary rocks whereas the primary source of the Xin'anzhai monzogranites is probably Proterozoic gneiss with an addition of 35–45% Proterozoic amphibolite. Our geochronological results, together with other published data, indicate the presence of Permo-Triassic magmatism associated with the Indosinian Orogeny along the Ailaoshan suture zone. This zone links with the Jinshajiang suture toward the northwest and the Song Ma–Hainan suture to the southeast. It is herein proposed that latest Permian convergent margin magmatism represented by the Xin'anzhai granitoid pluton (~ 252 Ma) terminated through the accretion of the Simao-Indochina to the South China Blocks, which marks the commencement of the Indosinian Orogeny resulting in the generation of the ~ 247 Ma Tongtiange S-type leucogranite.PostprintPeer reviewe

    Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic mélange, southwest China, and implications for the Paleo-Tethys

    Get PDF
    The Jinshajiang ophiolitic mélange zone in southwest China represents a remnant of the eastern Paleo-Tethys Ocean. Field, geochronological and geochemical studies have identified two distinct suites of plagiogranites within the mélange, the Dongzhulin trondhjemite and Jiyidu tonalite, which represent rift and subduction settings, respectively, related to opening and closing of the ocean. SHRIMP U-Pb analysis on zircons extracted from the Dongzhulin trondhjemite yields a mean 206Pb/238U age of 347 ± 7 Ma. REE and isotopic characteristics suggest an origin from low pressure partial melting of an amphibolitic protolith. Highly variable Hf isotopic compositions for zircons from this body may indicate a heterogenous source involving both depleted mantle and enriched continental components. This, together with geologic relations, suggests formation near an embryonic spreading center in a continent-ocean transition setting. The Jiyidu tonalite has a U-Pb zircon age of 283 ± 3 Ma, and geochemical data indicates high Sr/Y, (La/Yb)N, Nb/Ta and low Y, and marked heavy REE depletion. These signatures suggest derivation from low degree partial melting of subducted slab at pressure high enough to stabilize garnet and rutile. A slab-melt origin is also supported by in situ Hf and O data for zircon that show isotopic compositions comparable with typical altered oceanic crust. Thus, the crystallization age of the Jiyidu high Sr/Y tonalite provides a constraint for the subduction of the Jinshajiang ocean floor. The rift-related Dongzhulin trondhjemite and subduction-related Jiyidu high-Sr/Y tonalite constrain the timing and setting of opening and closing of this segment of the Paleo-Tethys Ocean

    Petrogenesis and tectonic significance of mafic–ultramafic rocks from Southwest Yunnan, China

    Get PDF
    This study focuses on the mafic–ultramafic lavas of the Early Carboniferous outcrop in Mangxin, southwestern Yunnan, China. Picrites with 26–32 wt% MgO and a quenched texture are the most significant components of this rock association. This article divides the Mangxin picrites into two types. The mantle potential temperature (TpT_{{p}}) of these picrites is higher than the TpT_{{p}} range of mid-ocean ridges and reaches that of mantle plumes. According to the geochemical characteristics, the Type-1 picrites probably formed from the melting of the mantle plume head and were contaminated by ambient depleted mantle, whereas the Type-2 picrites formed from the melting of mantle plume tails. These plume-related mafic–ultramafic rocks in Mangxin and the ocean island basalt (OIB)-carbonate rock associations in many areas of the Changning–Menglian belt provide significant evidence for the improvement of previous models of the Palaeotethyan oceanic plateau

    Petrogenesis and tectonic significance of mafic–ultramafic rocks from Southwest Yunnan, China

    Get PDF
    This study focuses on the mafic–ultramafic lavas of the Early Carboniferous outcrop in Mangxin, southwestern Yunnan, China. Picrites with 26–32 wt% MgO and a quenched texture are the most significant components of this rock association. This article divides the Mangxin picrites into two types. The mantle potential temperature (TpT_{{p}}) of these picrites is higher than the TpT_{{p}} range of mid-ocean ridges and reaches that of mantle plumes. According to the geochemical characteristics, the Type-1 picrites probably formed from the melting of the mantle plume head and were contaminated by ambient depleted mantle, whereas the Type-2 picrites formed from the melting of mantle plume tails. These plume-related mafic–ultramafic rocks in Mangxin and the ocean island basalt (OIB)-carbonate rock associations in many areas of the Changning–Menglian belt provide significant evidence for the improvement of previous models of the Palaeotethyan oceanic plateau

    The volcaniclastic series from the luang prabang basin, Laos: A witness of a triassic magmatic arc?

    No full text
    International audienceThe paleogeographic evolution of South East Asia (SEA) during the early Mesozoic is still poorly understood and a number of models have recently been put forward to account for the geodynamic evolution of SEA. The Luang Prabang Basin (north Laos), located in the core of a “paleogeographic jigsaw” in SEA, recorded a long lasting volcanism that spanned for ∌ 35 my from the earliest Triassic up to Late Triassic as evidenced by combined stratigraphic and geochronological (U-Pb/zircon) analyses performed on both volcanic and volcaniclastic series. The volcanic rocks are arc tholeiites and calk-alkaline andesites to dacites. The volcaniclastic rocks contain, in part, volcaniclasts produced contemporaneously with sedimentation. Both the volcanic and volcaniclastic series display geochemical features characteristic of a subduction related volcanism. Therefore, the Luang Prabang Basin documents a magmatic arc in a good agreement with the recent recognition of neighboring ophiolitic rocks in the Luang Prabang area. Following a passive margin setting that prevailed from the late Carboniferous to the late Permian, an active margin then initiated along the western margin of the Indochina Block. This active magmatic arc developed as the result of an east-dipping subduction below the Indochina Block during most of the Triassic, at least from ca. 250 to 215 Ma. Subsequently, this oceanic subduction episode must have been followed by a continental collision of the Indochina Block with the eastern Simao Block, at a period that remains to be defined

    Pre-Late Eocene position of the LĂŒchun-Jinping microblock in western Yangtze Craton: constraints from Eocene-Oligocene lamprophyres in southeastern Tibet

    Get PDF
    The tectono-magmatic history of the LĂŒchun-Jinping microblock and its possible affinity with the Yangtze Craton are important elements for the reconstruction of Cenozoic plate tectonics in southeastern Tibet. In order to constrain the affinity and decipher the pre-Cenozoic paleopositon of the LĂŒchun-Jinping microblock, we focused on the petrogenesis of Eocene-Oligocene lamprophyres in the LĂŒchun-Jinping microblock. The lamprophyres yield zircon Usingle bondPb ages of 34.7–33.3 Ma and exhibit potassic-ultrapotassic features with elevated K2O/Na2O (1.4–4.0) ratios. They are characterized by high concentrations of compatible elements (e.g., Cr = 187–692 ppm, Ni = 31–218 ppm), large-ion-lithophile elements and light rare-earth elements enrichment, high-field-strength elements depletion, and high radiogenic isotopic values, i.e. (87Sr/86Sr)i = 0.7063–0.7078 and ΔNd(t) = −3.9 to −2.4. Combined with the low Nb/U ratios, these features suggest that the lithospheric mantle source was metasomatized by subduction-related fluids beneath the LĂŒchun-Jinping microblock. The relatively high Rb/Sr ratios and high heavy rare-earth element contents indicate that these lamprophyres were derived from partial melting of a phlogopite-bearing lherzolite within the spinel stability field. The parental magmas have experienced fractional crystallization of olivine and clinopyroxene during emplacement. Comprehensive comparisons between the lamprophyres from the LĂŒchun-Jinping microblock and the potassic-ultrapotassic mafic rocks from the western Yangtze Craton indicate that the LĂŒchun-Jinping microblock can be regarded as a dismembered part of the western Yangtze Craton due to continental extrusion and Cenozoic sinistral displacement. The compositional trends of the potassic-ultrapotassic mafic rocks suggest that the palaeogeographic position of the LĂŒchun-Jinping microblock was near the Dali area (west of the Binchuan) and close to the Jinshajiang suture zone before the Cenozoic

    Geochronology and petrogenesis of the early Silurian Zeluo mafic-ultramafic intrusion, eastern Tibet: implications for the tectonic setting and evolution of the eastern Proto-Tethys Ocean

    Get PDF
    The Tibetan Plateau is a key region to understand the evolution of the Tethys Oceans. To better constrain the tectonic evolution of the Proto-Tethys Ocean on the western margin of the Yangtze plate, we present an integrated petrography, geochemistry, and zircon U-Pb-Lu-Hf isotope study on newly recognized early Silurian gabbro and serpentinite rocks from the eastern Yidun terrane of the Tibetan Plateau. Zircon U-Pb dating of the gabbro yields an Early Silurian age of 438.2 ± 2.8 Ma. Zircon ΔHf(t) values of 5.4 to 8.5 suggest a single-stage model age (TDM1) ranging from 729 to 858 Ma. The gabbros exhibit low total rare earth element abundances but are moderately enriched in the light rare earth elements and the large-ion lithophile elements (e.g. Rb, Ba, and Sr), and display representative negative high-field strength elemental anomalies for Nb, Ta, Zr, and Hf on spidergrams. The gabbro and serpentinites were derived from a depleted mantle-like source made of garnet-spinel lherzolite composition, from a sub-arc mantle wedge that was metasomatized by slab dehydration. Thus, the gabbro and serpentinites record an Early Silurian subduction event of the Proto-Tethys Ocean under the Yangtze plate. Furthermore, this study confirms that the Yidun terrane on the western margin of the Yangtze plate is underlined by a Precambrian crystalline basement
    • 

    corecore