195 research outputs found

    Structured Mapping of Petri Net States and Events for FPGA Implementations

    Get PDF
    The paper presents a new method of structured encoding of global internal states and events in Reconfigurable Logic Controllers, which are directly mapped into Field Programmable Gate Arrays (FPGA). Modular, concurrently decomposed, colored state machine is chosen as a intermediate model, before the mapping of Petri net into an array structure of dedicated but very flexible and reliable digital system. The initial textual specification in formal Gentzen logic serves both as a design description for a rapid prototyping, as well as formal model, suitable for detailed computer-based reasoning about optimized and synthesized logic controller, implemented in configurable hardware. Only the selected linear subset from general, universal propositional Gentzen Logic is necessary to deduce several properties of the net, such as relations of nonconcurrency among structurally ordered macroplaces. The goal of this paper is to present the design methodology for modeling and synthesis of discrete controllers using related Petri net theory, rule-based theory (mathematical logic), and VHDL

    An evolutionary approach to the use of petri net based models : from parallel controllers to Hw/Sw codesign

    Get PDF
    The main purpose of this article is to present how Petri Nets (PNs) have been used for hardware design at our research laboratory. We describe the use of PN models to specify synchronous parallel controllers and how PN specifications can be extended to include the behavioural description of the data path, by using object-oriented concepts. Some hierarchical mechanisms which deal with the specification of complex digital systems are highlighted. It is described a design flow that includes, among others, the automatic generation of VHDL code to synthesize the control unit of the system. The use of PNs as part of a multiple-view model within an object-oriented methodology for hardware/software codesign is debated. The EDgAR-2 platform is considered as the reconfigurable target architecture for implementing the systems and its main characteristics are shown

    Doctor of Philosophy

    Get PDF
    dissertationOver the last decade, cyber-physical systems (CPSs) have seen significant applications in many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics, wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and control physical processes. The motivating example for this dissertation is the use of fault- tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing Ecus to communicate with each other, it is possible for them to share processing power to improve performance. In addition, networked Ecus enable flexible mapping to physical processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate network faults is important for hardware reconfiguration to maintain the normal operation of a system. Adding a fault-tolerance feature in a routing protocol, however, increases its design complexity, making it prone to many functional problems. Formal verification techniques are therefore needed to verify its correctness. This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal modeling and verification using two different methodologies. An improvement upon the previously published fault-tolerant routing algorithm, a link-fault routing algorithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while avoiding deadlock conservatively by appropriately dropping network packets. This routing algorithm, together with its routing architecture, is then modeled in a process-algebra language LNT, and compositional verification techniques are used to verify its key functional properties. As a comparison, it is modeled using channel-level VHDL which is compiled to labeled Petri-nets (LPNs). Algorithms for a partial order reduction method on LPNs are given. An optimal result is obtained from heuristics that trace back on LPNs to find causally related enabled predecessor transitions. Key observations are made from the comparison between these two verification methodologies

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    System specification and performance analysis

    Get PDF

    AUTSEG: Automatic Test Set Generator for Embedded Reactive Systems

    Get PDF
    Part 2: Tools and FrameworksInternational audienceOne of the biggest challenges in hardware and software design is to ensure that a system is error-free. Small errors in reactive embedded systems can have disastrous and costly consequences for a project. Preventing such errors by identifying the most probable cases of erratic system behavior is quite challenging. In this paper, we introduce an automatic test set generator called AUTSEG. Its input is a generic model of the target system, generated using the synchronous approach. Our tool finds the optimal preconditions for restricting the state space of the model. It only works locally on significant subspaces. Our approach exhibits a simpler and efficient quasi-flattening algorithm than existing techniques and a useful compiled form to check security properties and reduce the combinatorial explosion problem of state space. To illustrate our approach, AUTSEG was applied to the case of a transportation contactless card

    A Very High Level Logic Synthesis

    Get PDF
    The evolution of Computer Aided Design (CAD) calls for the incorporation of design specifications into a microelectronics system development cycle. This expansion requires the establishment of a new generation of CAD procedures, defined as Very High Level Logic Synthesis (VHLLS). The fundamental characteristics of open-ended VHLLS are: (1) front-end graphical interface; (2) time encapsulation; and (3) automatic translation into a behavioral description. Consequently, the VHLLS paradigm represents an advanced category of CAD-based microelectronics system design, built on a deep usage of expert systems and intelligent methods. Artificial Intelligence (AI) formalisms such as Knowledge Representation System (KRS) are necessary to model properties related to the very high level of specification such as: dealing with ambiguities and inconsistencies, reasoning, computing high-level specification, etc. A prototype VHLLS design suite, called Specification Procedure for Electronic Circuits in Automation Language (SPECIAL), is defined, compared with today\u27s commercial tools and verified using numerous design examples. As a result, a new family of formal and accelerated development methodologies has become feasible with a better understanding of formalized knowledge driving these design processes

    Interactive modelling and simulation of heterogeneous systems

    Get PDF

    Master of Science

    Get PDF
    thesisVerification of analog circuits is becoming a bottle-neck for the verification of complex analog/mixed-signal (AMS) circuits. In order to assist functional verification of complex AMS system-on-chips (SoCs), there is a need to represent the transistor-level circuits in the form of abstract models. The ability to represent the analog circuits as behavioral models is necessary, but not sufficient. Though there exist languages like Verilog-AMS and VHDL-AMS for modeling AMS circuits, there is no easy method for generating these models directly from the transistor-level descriptions. This thesis presents an improved method for extracting behavioral models from the simulations of AMS circuits. This method generates labeled Petri net (LPN) models that can be used in the formal verification of circuits, and SystemVerilog models that can be used in the system-level simulations

    Techniques for the formal verification of analog and mixed- signal designs

    Get PDF
    Embedded systems are becoming a core technology in a growing range of electronic devices. Cornerstones of embedded systems are analog and mixed signal (AMS) designs, which are integrated circuits required at the interfaces with the real world environment. The verification of AMS designs is concerned with the assurance of correct functionality, in addition to checking whether an AMS design is robust with respect to different types of inaccuracies like parameter tolerances, nonlinearities, etc. The verification framework described in this thesis is composed of two proposed methodologies each concerned with a class of AMS designs, i.e., continuous-time AMS designs and discrete-time AMS designs. The common idea behind both methodologies is built on top of Bounded Model Checking (BMC) algorithms. In BMC, we search for a counter-example for a property verified against the design model for bounded number of verification steps. If a concrete counter-example is found, then the verification is complete and reports a failure, otherwise, we need to increment the number of steps until property validation is achieved. In general, the verification is not complete because of limitations in time and memory needed for the verification. To alleviate this problem, we observed that under certain conditions and for some classes of specification properties, the verification can be complete if we complement the BMC with other methods such as abstraction and constraint based verification methods. To test and validate the proposed approaches, we developed a prototype implementation in Mathematica and we targeted analog and mixed signal systems, like oscillator circuits, switched capacitor based designs, Delta-Sigma modulators for our initial tests of this approach
    • …
    corecore