8,395 research outputs found

    Petri Games: Synthesis of Distributed Systems with Causal Memory

    Full text link
    We present a new multiplayer game model for the interaction and the flow of information in a distributed system. The players are tokens on a Petri net. As long as the players move in independent parts of the net, they do not know of each other; when they synchronize at a joint transition, each player gets informed of the causal history of the other player. We show that for Petri games with a single environment player and an arbitrary bounded number of system players, deciding the existence of a safety strategy for the system players is EXPTIME-complete.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    A Fuzzy Petri Nets Model for Computing With Words

    Full text link
    Motivated by Zadeh's paradigm of computing with words rather than numbers, several formal models of computing with words have recently been proposed. These models are based on automata and thus are not well-suited for concurrent computing. In this paper, we incorporate the well-known model of concurrent computing, Petri nets, together with fuzzy set theory and thereby establish a concurrency model of computing with words--fuzzy Petri nets for computing with words (FPNCWs). The new feature of such fuzzy Petri nets is that the labels of transitions are some special words modeled by fuzzy sets. By employing the methodology of fuzzy reasoning, we give a faithful extension of an FPNCW which makes it possible for computing with more words. The language expressiveness of the two formal models of computing with words, fuzzy automata for computing with words and FPNCWs, is compared as well. A few small examples are provided to illustrate the theoretical development.Comment: double columns 14 pages, 8 figure

    Analysis of Petri Nets and Transition Systems

    Full text link
    This paper describes a stand-alone, no-frills tool supporting the analysis of (labelled) place/transition Petri nets and the synthesis of labelled transition systems into Petri nets. It is implemented as a collection of independent, dedicated algorithms which have been designed to operate modularly, portably, extensibly, and efficiently.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Wadge Degrees of ω\omega-Languages of Petri Nets

    Full text link
    We prove that ω\omega-languages of (non-deterministic) Petri nets and ω\omega-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of ω\omega-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of ω\omega-languages of (non-deterministic) Turing machines which also form the class of effective analytic sets. In particular, for each non-null recursive ordinal α<ω_1CK\alpha < \omega\_1^{{\rm CK}} there exist some Σ0_α{\bf \Sigma}^0\_\alpha-complete and some Π0_α{\bf \Pi}^0\_\alpha-complete ω\omega-languages of Petri nets, and the supremum of the set of Borel ranks of ω\omega-languages of Petri nets is the ordinal γ_21\gamma\_2^1, which is strictly greater than the first non-recursive ordinal ω_1CK\omega\_1^{{\rm CK}}. We also prove that there are some Σ_11{\bf \Sigma}\_1^1-complete, hence non-Borel, ω\omega-languages of Petri nets, and that it is consistent with ZFC that there exist some ω\omega-languages of Petri nets which are neither Borel nor Σ_11{\bf \Sigma}\_1^1-complete. This answers the question of the topological complexity of ω\omega-languages of (non-deterministic) Petri nets which was left open in [DFR14,FS14].Comment: arXiv admin note: text overlap with arXiv:0712.1359, arXiv:0804.326

    Approaching the Coverability Problem Continuously

    Get PDF
    The coverability problem for Petri nets plays a central role in the verification of concurrent shared-memory programs. However, its high EXPSPACE-complete complexity poses a challenge when encountered in real-world instances. In this paper, we develop a new approach to this problem which is primarily based on applying forward coverability in continuous Petri nets as a pruning criterion inside a backward coverability framework. A cornerstone of our approach is the efficient encoding of a recently developed polynomial-time algorithm for reachability in continuous Petri nets into SMT. We demonstrate the effectiveness of our approach on standard benchmarks from the literature, which shows that our approach decides significantly more instances than any existing tool and is in addition often much faster, in particular on large instances.Comment: 18 pages, 4 figure

    Open Petri Nets

    Full text link
    The reachability semantics for Petri nets can be studied using open Petri nets. For us an "open" Petri net is one with certain places designated as inputs and outputs via a cospan of sets. We can compose open Petri nets by gluing the outputs of one to the inputs of another. Open Petri nets can be treated as morphisms of a category Open(Petri)\mathsf{Open}(\mathsf{Petri}), which becomes symmetric monoidal under disjoint union. However, since the composite of open Petri nets is defined only up to isomorphism, it is better to treat them as morphisms of a symmetric monoidal double category Open(Petri)\mathbb{O}\mathbf{pen}(\mathsf{Petri}). We describe two forms of semantics for open Petri nets using symmetric monoidal double functors out of Open(Petri)\mathbb{O}\mathbf{pen}(\mathsf{Petri}). The first, an operational semantics, gives for each open Petri net a category whose morphisms are the processes that this net can carry out. This is done in a compositional way, so that these categories can be computed on smaller subnets and then glued together. The second, a reachability semantics, simply says which markings of the outputs can be reached from a given marking of the inputs.Comment: 30 pages, TikZ figure

    Dense-Timed Petri Nets: Checking Zenoness, Token liveness and Boundedness

    Get PDF
    We consider Dense-Timed Petri Nets (TPN), an extension of Petri nets in which each token is equipped with a real-valued clock and where the semantics is lazy (i.e., enabled transitions need not fire; time can pass and disable transitions). We consider the following verification problems for TPNs. (i) Zenoness: whether there exists a zeno-computation from a given marking, i.e., an infinite computation which takes only a finite amount of time. We show decidability of zenoness for TPNs, thus solving an open problem from [Escrig et al.]. Furthermore, the related question if there exist arbitrarily fast computations from a given marking is also decidable. On the other hand, universal zenoness, i.e., the question if all infinite computations from a given marking are zeno, is undecidable. (ii) Token liveness: whether a token is alive in a marking, i.e., whether there is a computation from the marking which eventually consumes the token. We show decidability of the problem by reducing it to the coverability problem, which is decidable for TPNs. (iii) Boundedness: whether the size of the reachable markings is bounded. We consider two versions of the problem; namely semantic boundedness where only live tokens are taken into consideration in the markings, and syntactic boundedness where also dead tokens are considered. We show undecidability of semantic boundedness, while we prove that syntactic boundedness is decidable through an extension of the Karp-Miller algorithm.Comment: 61 pages, 18 figure
    corecore