297 research outputs found

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs

    On the Category of Petri Net Computations

    No full text
    We introduce the notion of strongly concatenable process as a refinement of concatenable processes [DMM89] which can be expressed axiomatically via a functor Q[]Q[-] from the category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the precise sense that, for each net NN, the strongly concatenable processes of NN are isomorphic to the arrows of Q[]Q[-]. In addition, we identify a coreflection right adjoint to Q[]Q[-] and characterize its replete image, thus yielding an axiomatization of the category of net computations

    Two polygraphic presentations of Petri nets

    Get PDF
    This document gives an algebraic and two polygraphic translations of Petri nets, all three providing an easier way to describe reductions and to identify some of them. The first one sees places as generators of a commutative monoid and transitions as rewriting rules on it: this setting is totally equivalent to Petri nets, but lacks any graphical intuition. The second one considers places as 1-dimensional cells and transitions as 2-dimensional ones: this translation recovers a graphical meaning but raises many difficulties since it uses explicit permutations. Finally, the third translation sees places as degenerated 2-dimensional cells and transitions as 3-dimensional ones: this is a setting equivalent to Petri nets, equipped with a graphical interpretation.Comment: 28 pages, 24 figure

    Functorial Semantics for Petri Nets under the Individual Token Philosophy

    Get PDF
    Although the algebraic semantics of place/transition Petri nets under the collective token philosophy has been fully explained in terms of (strictly) symmetric (strict) monoidal categories, the analogous construction under the individual token philosophy is not completely satisfactory because it lacks universality and also functoriality. We introduce the notion of pre-net to recover these aspects, obtaining a fully satisfactory categorical treatment centered on the notion of adjunction. This allows us to present a purely logical description of net behaviours under the individual token philosophy in terms of theories and theory morphisms in partial membership equational logic, yielding a complete match with the theory developed by the authors for the collective token view of net
    corecore