484 research outputs found

    An Iterative Approach for Collision Feee Routing and Scheduling in Multirobot Stations

    Full text link
    This work is inspired by the problem of planning sequences of operations, as welding, in car manufacturing stations where multiple industrial robots cooperate. The goal is to minimize the station cycle time, \emph{i.e.} the time it takes for the last robot to finish its cycle. This is done by dispatching the tasks among the robots, and by routing and scheduling the robots in a collision-free way, such that they perform all predefined tasks. We propose an iterative and decoupled approach in order to cope with the high complexity of the problem. First, collisions among robots are neglected, leading to a min-max Multiple Generalized Traveling Salesman Problem (MGTSP). Then, when the sets of robot loads have been obtained and fixed, we sequence and schedule their tasks, with the aim to avoid conflicts. The first problem (min-max MGTSP) is solved by an exact branch and bound method, where different lower bounds are presented by combining the solutions of a min-max set partitioning problem and of a Generalized Traveling Salesman Problem (GTSP). The second problem is approached by assuming that robots move synchronously: a novel transformation of this synchronous problem into a GTSP is presented. Eventually, in order to provide complete robot solutions, we include path planning functionalities, allowing the robots to avoid collisions with the static environment and among themselves. These steps are iterated until a satisfying solution is obtained. Experimental results are shown for both problems and for their combination. We even show the results of the iterative method, applied to an industrial test case adapted from a stud welding station in a car manufacturing line

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda

    Get PDF
    Autonomous mobile robots (AMR) are currently being introduced in many intralogistics operations, like manufacturing, warehousing, cross-docks, terminals, and hospitals. Their advanced hardware and control software allow autonomous operations in dynamic environments. Compared to an automated guided vehicle (AGV) system in which a central unit takes control of scheduling, routing, and dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with other resources like machines and systems and thus decentralize the decision-making process. Decentralized decision-making allows the system to react dynamically to changes in the system state and environment. These developments have influenced the traditional methods and decision-making processes for planning and control. This study identifies and classifies research related to the planning and control of AMRs in intralogistics. We provide an extended literature review that highlights how AMR technological advances affect planning and control decisions. We contribute to the literature by introducing an AMR planning and control framework t

    DISPATCHING AND CONFLICT-FREE ROUTING OF VEHICLES IN NEW CONCEPTUAL AUTOMATED CONTAINER TERMINALS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles

    Get PDF
    Although simulation is a very flexible and cost effective problem solving technique, it has been traditionally limited to building models which are merely descriptive of the system under study. Relatively new approaches combine improvement heuristics and artificial intelligence with simulation to provide prescriptive power in simulation modeling. This study demonstrates the synergy obtained by bringing together the "learning automata theory" and simulation analysis. Intelligent objects are embedded in the simulation model of a Flexible Manufacturing System (FMS), in which Automated Guided Vehicles (AGVs) serve as the material handling system between four unique workcenters. The objective of the study is to find satisfactory AGV routing patterns along available paths to minimize the mean time spent by different kinds of parts in the system. System parameters such as different part routing and processing time requirements, arrivals distribution, number of palettes, available paths between workcenters, number and speed of AGVs can be defined by the user. The network of learning automata acts as the decision maker driving the simulation, and the FMS model acts as the training environment for the automata network; providing realistic, yet cost-effective and risk-free feedback. Object oriented design and implementation of the simulation model with a process oriented world view, graphical animation and visually interactive simulation (using GUI objects such as windows, menus, dialog boxes; mouse sensitive dynamic automaton trace charts and dynamic graphical statistical monitoring) are other issues dealt with in the study

    Enhancing the performance of automated guided vehicles through reliability, operation and maintenance assessment

    Get PDF
    Automated guided vehicles (AGVs), a type of unmanned moving robots that move along fixed routes or are directed by laser navigation systems, are increasingly used in modern society to improve efficiency and lower the cost of production. A fleet of AGVs operate together to form a fully automatic transport system, which is known as an AGV system. To date, their added value in efficiency improvement and cost reduction has been sufficiently explored via conducting in-depth research on route optimisation, system layout configuration, and traffic control. However, their safe application has not received sufficient attention although the failure of AGVs may significantly impact the operation and efficiency of the entire system. This issue becomes more markable today particularly in the light of the fact that the size of AGV systems is becoming much larger and their operating environment is becoming more complex than ever before. This motivates the research into AGV reliability, availability and maintenance issues in this thesis, which aims to answer the following four fundamental questions: (1) How could AGVs fail? (2) How is the reliability of individual AGVs in the system assessed? (3) How does a failed AGV affect the operation of the other AGVs and the performance of the whole system? (4) How can an optimal maintenance strategy for AGV systems be achieved? In order to answer these questions, the method for identifying the critical subsystems and actions of AGVs is studied first in this thesis. Then based on the research results, mathematical models are developed in Python to simulate AGV systems and assess their performance in different scenarios. In the research of this thesis, Failure Mode, Effects and Criticality Analysis (FMECA) was adopted first to analyse the failure modes and effects of individual AGV subsystems. The interactions of these subsystems were studied via performing Fault Tree Analysis (FTA). Then, a mathematical model was developed to simulate the operation of a single AGV with the aid of Petri Nets (PNs). Since most existing AGV systems in modern industries and warehouses consist of multiple AGVs that operate synchronously to perform specific tasks, it is necessary to investigate the interactions between different AGVs in the same system. To facilitate the research of multi-AGV systems, the model of a three-AGV system with unidirectional paths was considered. In the model, an advanced concept PN, namely Coloured Petri Net (CPN), was creatively used to describe the movements of the AGVs. Attributing to the application of CPN, not only the movements of the AGVs but also the various operation and maintenance activities of the AGV systems (for example, item delivery, corrective maintenance, periodic maintenance, etc.) can be readily simulated. Such a unique technique provides us with an effective tool to investigate larger-scale AGV systems. To investigate the reliability, efficiency and maintenance of dynamic AGV systems which consist of multiple single-load and multi-load AGVs traveling along different bidirectional routes in different missions, an AGV system consisting of 9 stations was simulated using the CPN methods. Moreover, the automatic recycling of failed AGVs is studied as well in order to further reduce human participation in the operation of AGV systems. Finally, the simulation results were used to optimise the design, operation and maintenance of multi-AGV systems with the consideration of the throughputs and corresponding costs of them.The research reported in this thesis contributes to the design, reliability, operation, and maintenance of large-scale AGV systems in the modern and rapidly changing world.</div

    Conflict-Free Routing of Mobile Robots

    Get PDF
    The recent advances in perception have enabled the development of more autonomous mobile robots in the sense that they can operate in a more dynamic environment where obstacles surrounding the robot emerge, disappear, and move. The increased perception of Autonomous Mobile Robots (AMRs) allows them to plan detailed on-line trajectories in order to avoid previously unforeseen obstacles, making AMRs useful in dynamic environments where humans, traditional fork-lifts, and also other mobile robots operate. These abilities contributed to increase automation in logistic applications. This thesis discusses how to efficiently operate a fleet of AMRs and make sure that all tasks are successfully completed.Assigning robots to specific delivery tasks and deciding the routes they have to travel can be modelled as a variant of the classical Vehicle Routing Problem (VRP), the combinatorial optimization problem of designing routes for vehicles. In related research it has been extended to scheduling routes for vehicles to serve customers according to predetermined specifications, such as arrival time at a customer, amount of goods to deliver, etc.In this thesis we consider to schedule a fleet of robots such that areas avoid being congested, delivery time-windows are met, the need for robots to recharge is considered, while at the same time the robots have freedom to use alternative paths to handle changes in the environment. This particular version of the VRP, called CF-EVRP (Conflict-free Electrical Vehicle Routing Problem) is motivated by an industrial need. In this work we consider using optimizing general purpose solvers, in particular, MILP and SMT solvers are investigated. We run extensive computational analysis over well-known combinatorial optimization problems, such as job shop scheduling and bin-packing problems, to evaluate modeling techniques and the relative performance of state-of-the-art MILP and SMT solvers.We propose a monolithic model for the CF-EVRP as well as a compositional approach that decomposes the problem into sub-problems and formulate them as either MILP or SMT problems depending on what fits each particular problem best. The performance of the two approaches is evaluated on a set of CF-EVRP benchmark problems, showing the feasibility of using a compositional approach for solving practical fleet scheduling problems
    corecore