255 research outputs found

    Computer Science at the University of Helsinki 1998

    Get PDF

    Reconfigurable middleware architectures for large scale sensor networks

    Get PDF
    Wireless sensor networks, in an effort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task reconfiguration and high-level object recomposition. Through the layered approach of SENSIX, the software developer creates a domain-specific sensing architecture by defining a customized task specification and utilizing object inheritance. In addition, SENSIX performs better at large scales (on the order of 1000 nodes or more) than other sensor network middleware which do not include such unified facilities for vertical integration

    Reliable Industrial IoT-Based Distributed Automation

    Get PDF
    Reconfigurable manufacturing systems supported by Industrial Internet-of-Things (IIoT) are modular and easily integrable, promoting efficient system/component reconfigurations with minimal downtime. Industrial systems are commonly based on sequential controllers described with Control Interpreted Petri Nets (CIPNs). Existing design methodologies to distribute centralized automation/control tasks focus on maintaining functional properties of the system during the process, while disregarding failures that may occur during execution (e. g., communication packet drops, sensing or actuation failures). Consequently, in this work, we provide a missing link for reliable IIoT-based distributed automation. We introduce a method to transform distributed control models based on CIPNs into Stochastic Reward Nets that enable integration of realistic fault models (e. g., probabilistic link models). We show how to specify desired system properties to enable verification under the adopted communication/fault models, both at design-and run-time; we also show feasibility of runtime verification on the edge, with a continuously updated system model. Our approach is used on real industrial systems, resulting in modifications of local controllers to guarantee reliable system operation in realistic IIoT environments

    Reliable Industrial IoT-Based Distributed Automation

    Get PDF
    Reconfigurable manufacturing systems supported by Industrial Internet-of-Things (IIoT) are modular and easily integrable, promoting efficient system/component reconfigurations with minimal downtime. Industrial systems are commonly based on sequential controllers described with Control Interpreted Petri Nets (CIPNs). Existing design methodologies to distribute centralized automation/control tasks focus on maintaining functional properties of the system during the process, while disregarding failures that may occur during execution (e. g., communication packet drops, sensing or actuation failures). Consequently, in this work, we provide a missing link for reliable IIoT-based distributed automation. We introduce a method to transform distributed control models based on CIPNs into Stochastic Reward Nets that enable integration of realistic fault models (e. g., probabilistic link models). We show how to specify desired system properties to enable verification under the adopted communication/fault models, both at design-and run-time; we also show feasibility of runtime verification on the edge, with a continuously updated system model. Our approach is used on real industrial systems, resulting in modifications of local controllers to guarantee reliable system operation in realistic IIoT environments

    Acta Cybernetica : Volume 15. Number 4.

    Get PDF

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    Ad hoc network security and modeling with stochastic petri nets

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. These networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. Unlike the existing commercial wireless systems and fixed infrastructure networks, they do not rely on specialized routers for path discovery and traffic routing. Security is an important issue in such networks. Typically, mobile nodes are significantly more susceptible to physical attacks than their wired counterparts. This research intends to investigate the ad hoc network routing security by proposing a performance enhanced Secure ad hoc On-demand Routing protocol (SOR). Specifically, it presents a method to embed Security Level into ad hoc on-demand routing protocols using node-disjoint multipath, and to use maximum hopcount to restrict the number of routing packets in a specific area. The proposed scheme enables the use of security as a marked factor to improve the relevance of the routes discovered by ad hoc routing protocols. It provides customizable security to the flow of routing protocol messages. In general, SOR offers an alternative way to implement security in on-demand routing protocols. Ad hoc network is too complex to allow analytical study for explicit performance expressions. This research presents a Stochastic Petri net-based approach to modeling and analysis of mobile ad hoc network. This work illustrates how this model is built as a scalable model and used to exploit the characteristics of the networks. The proposed scheme is a powerful analytical model that can be used to derive network performance much more easily than a simulation-based approach. Furthermore, the proposed model is extended to study the performance of ad hoc network security by adding multipath selection and security measurement parameters. This research gives a quantificational measurement to analyze the performance of a modified SPN model under the effect of multipath and attack of a hypothetical compromised node

    The 4th Conference of PhD Students in Computer Science

    Get PDF

    Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology and Applications Symposium

    Get PDF
    The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS\u2707) presents papers describing contributions both to state of the art and state of the practice in the broad field of real-time and embedded systems. The 17 accepted papers were selected from 19 submissions. This proceedings is also available as Washington University in St. Louis Technical Report WUCSE-2007-17, at http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special thanks go to the General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and Frank Mueller for their support and guidance
    corecore