5,151 research outputs found

    Adaptable processes

    Get PDF
    We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities

    Process Calculi Abstractions for Biology

    Get PDF
    Several approaches have been proposed to model biological systems by means of the formal techniques and tools available in computer science. To mention just a few of them, some representations are inspired by Petri Nets theory, and some other by stochastic processes. A most recent approach consists in interpreting the living entities as terms of process calculi where the behavior of the represented systems can be inferred by applying syntax-driven rules. A comprehensive picture of the state of the art of the process calculi approach to biological modeling is still missing. This paper goes in the direction of providing such a picture by presenting a comparative survey of the process calculi that have been used and proposed to describe the behavior of living entities. This is the preliminary version of a paper that was published in Algorithmic Bioprocesses. The original publication is available at http://www.springer.com/computer/foundations/book/978-3-540-88868-

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Design-time formal verification for smart environments: an exploratory perspective

    Get PDF
    Smart environments (SmE) are richly integrated with multiple heterogeneous devices; they perform the operations in intelligent manner by considering the context and actions/behaviors of the users. Their major objective is to enable the environment to provide ease and comfort to the users. The reliance on these systems demands consistent behavior. The versatility of devices, user behavior and intricacy of communication complicate the modeling and verification of SmE's reliable behavior. Of the many available modeling and verification techniques, formal methods appear to be the most promising. Due to a large variety of implementation scenarios and support for conditional behavior/processing, the concept of SmE is applicable to diverse areas which calls for focused research. As a result, a number of modeling and verification techniques have been made available for designers. This paper explores and puts into perspective the modeling and verification techniques based on an extended literature survey. These techniques mainly focus on some specific aspects, with a few overlapping scenarios (such as user interaction, devices interaction and control, context awareness, etc.), which were of the interest to the researchers based on their specialized competencies. The techniques are categorized on the basis of various factors and formalisms considered for the modeling and verification and later analyzed. The results show that no surveyed technique maintains a holistic perspective; each technique is used for the modeling and verification of specific SmE aspects. The results further help the designers select appropriate modeling and verification techniques under given requirements and stress for more R&D effort into SmE modeling and verification researc

    On Modelling Communication in Ubiquitous Computing Systems using Algebraic Higher Order Nets

    Get PDF
    Ubiquitous computing systems (UCSs) are designed to participate almostimperceptibly in everyday life. To ensure a solid operation, a UCS heavily depends on a reliable and efficient communication between its distributed computing components. Moreover components can join and leave the system at any time.In order to guarantee high quality systems, the use of models is inevitable especiallyat an early stage of the development process where models are the only possibilityto address a system which does not yet exist in reality. Petri nets and graph transformationsystems are established, theoretically well-founded concepts for modellingand analysing complex systems.This paper presents a formal approach for modelling core aspects of the communicationin UCSs by using Algebraic Higher Order Nets with Individual Tokens andgraph transformation. The approach is suitable to cover the different aspects ofcommunication and enables the analysis of specific properties. The approach and itssuitability are illustrated based on a running example. The feasibility of embeddingthe approach in a broader context of modelling is demonstrated in applying it to areal world system: the Living Place Hamburg

    Formal analysis of ubiquitous computing environments through the APEX framework

    Get PDF
    Ubiquitous computing (ubicomp) systems involve complex interactions between multiple devices and users. This com-plexity makes it difficult to establish whether: (1) observa-tions made about use are truly representative of all possible interactions; (2) desirable characteristics of the system are true in all possible scenarios. To address these issues, tech-niques are needed that support an exhaustive analysis of a system’s design. This paper demonstrates one such exhaus-tive analysis technique that supports the early evaluation of alternative designs for ubiquitous computing environments. The technique combines models of behavior within the environment with a virtual world that allows its simulation. The models support checking of properties based on pat-terns. These patterns help the analyst to generate and verify relevant properties. Where these properties fail then scenar-ios suggested by the failure provide an important aid to redesign. The proposed technique uses APEX, a framework for rapid prototyping of ubiquitous environments based on Petri nets. The approach is illustrated through a smart li-brary example. Its benefits and limitations are discussed.(undefined
    • …
    corecore