4,965 research outputs found

    Capacity Bounded Grammars and Petri Nets

    Full text link
    A capacity bounded grammar is a grammar whose derivations are restricted by assigning a bound to the number of every nonterminal symbol in the sentential forms. In the paper the generative power and closure properties of capacity bounded grammars and their Petri net controlled counterparts are investigated

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Unfolding Shape Graphs

    Get PDF
    Shape graphs have been introduced in [Ren04a, Ren04b] as an abstraction to be used in model checking object oriented software, where states of the system are represented as graphs. Intuitively, the graphs modeling the states represent the structure of objects dynamically allocated in the heap. State transitions are then generated by applying graph transformation rules corresponding to the statements of the program. Since the state space of such systems is potentially unbounded, the graphs representing the states are abstracted by shape graphs. Graph transformation systems may be analyzed [BCK01, BK02] by constructing finite structures that approximate their behaviour with arbitrary accuracy, by using techniques developed in the context of Petri nets. The approach of [BK02] is to construct a chain of finite under-approximations of the Winskel’s style unfolding of a graph grammar, as well as a chain of finite over-approximations of the unfolding, where both chains converge to the full unfolding. The approximations may then be used to check properties of the underlying graph transformation system. We apply this technique to approximate the behaviour of systems represented by shape graphs and graph tranformation rules

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Substitution-based approach for linguistic steganography using antonym

    Get PDF
    Steganography has been a part of information technology security since a long time ago. The study of steganography is getting attention from researchers because it helps to strengthen the security in protecting content message during this era of Information Technology. In this study, the use of substitution-based approach for linguistic steganography using antonym is proposed where it is expected to be an alternative to the existing substitution approach that using synonym. This approach still hides the message as existing approach but its will change the semantic of the stego text from cover text. A tool has been developed to test the proposed approach and it has been verified and validated. This proposed approach has been verified based on its character length stego text towards the cover text, bit size types of the secret text towards the stego text and bit size types of the cover text towards the stego text. It has also been validated using four parameters, which are precision, recall, f-measure, and accuracy. All the results showed that the proposed approach was very effective and comparable to the existing synonym-based substitution approach

    Adjunct hexagonal array token Petri nets and hexagonal picture languages

    Get PDF
    Adjunct Hexagonal Array Token Petri Net Structures (AHPN) are re- cently introduced hexagonal picture generating devices which extended the Hexag- onal Array Token Petri Net Structures . In this paper we consider AHPN model along with a control feature called inhibitor arcs and compare it with some ex- pressive hexagonal picture generating and recognizing models with respect to the generating power
    • …
    corecore