8,065 research outputs found

    Symbolic analysis of bounded Petri nets

    Get PDF
    This paper presents a symbolic approach for the analysis of bounded Petri nets. The structure and behavior of the Petri net is symbolically modeled by using Boolean functions, thus reducing reasoning about Petri nets to Boolean calculation. The set of reachable markings is calculated by symbolically firing the transitions in the Petri net. Highly concurrent systems suffer from the state explosion problem produced by an exponential increase of the number of reachable states. This state explosion is handled by using Binary Decision Diagrams (BDDs) which are capable of representing large sets of markings with small data structures. Petri nets have the ability to model a large variety of systems and the flexibility to describe causality, concurrency, and conditional relations. The manipulation of vast state spaces generated by Petri nets enables the efficient analysis of a wide range of problems, e.g., deadlock freeness, liveness, and concurrency. A number of examples are presented in order to show how large reachability sets can be generated, represented, and analyzed with moderate BDD sizes. By using this symbolic framework, properties requiring an exhaustive analysis of the reachability graph can be efficiently verified.Peer ReviewedPostprint (published version

    Petri net analysis using boolean manipulation

    Get PDF
    This paper presents a novel analysis approach for bounded Petri nets. The net behavior is modeled by boolean functions, thus reducing reasoning about Petri nets to boolean calculation. The state explosion problem is managed by using Binary Decision Diagrams (BDDs), which are capable to represent large sets of markings in small data structures. The ability of Petri nets to model systems, the flexibility and generality of boolean algebras, and the efficient implementation of BDDs, provide a general environment to handle a large variety of problems. Examples are presented that show how all the reachable states (1018) of a Petri net can be efficiently calculated and represented with a small BDD (103 nodes). Properties requiring an exhaustive analysis of the state space can be verified in polynomial time in the size of the BDD.Peer ReviewedPostprint (author's final draft

    Efficient encoding schemes for symbolic analysis of Petri nets

    Get PDF
    Petri nets are a graph-based formalism appropriate to model concurrent systems such as asynchronous circuits or network protocols. Symbolic techniques based on Binary Decision Diagrams (BDDs) have emerged as one of the strategies to overcome the state explosion problem in the analysis of systems modeled by Petri nets. The existing techniques for state encoding use a variable-per-place strategy that leads to encoding schemes with very low density. This drawback has been partially mitigated by using Zero-Suppressed BDDs, that provide a typical reduction of BDD sizes by a factor of two. This work presents novel encoding schemes for Petri nets. By using algebraic techniques to analyze the topology of the net, sets of placesPeer ReviewedPostprint (published version

    Structural methods to improve the symbolic analysis of Petri nets

    Get PDF
    Symbolic techniques based on BDDs (Binary Decision Diagrams) have emerged as an efficient strategy for the analysis of Petri nets. The existing techniques for the symbolic encoding of each marking use a fixed set of variables per place, leading to encoding schemes with very low density. This drawback has been previously mitigated by using Zero-Suppressed BDDs, that provide a typical reduction of BDD sizes by a factor of two. Structural Petri net theory provides P-invariants that help to derive more efficient encoding schemes for the BDD representations of markings. P-invariants also provide a mechanism to identify conservative upper bounds for the reachable markings. The unreachable markings determined by the upper bound can be used to alleviate both the calculation of the exact reachability set and the scrutiny of properties. Such approach allows to drastically decrease the number of variables for marking encoding and reduce memory and CPU requirements significantly.Peer ReviewedPostprint (author's final draft

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB
    corecore