15 research outputs found

    A Kleene theorem for Petri automata

    Get PDF
    While studying the equational theory of Kleene Allegories (KAl), we recently proposed two ways of defining sets of graphs [BP15]: from KAl expressions, that is, regular expressions with intersection and converse; and from a new automata model, Petri automata, based on safe Petri nets. To be able to compare the sets of graphs generated by KAl expressions, we explained how to construct Petri automata out of arbitrary KAl expressions. In the present paper, we describe a reverse transformation: recovering an expression from an automaton. This has several consequences. First, it generalises Kleene theorem: the graph languages specified by Petri automata are precisely the languages denoted by KAl expressions. Second, this entails that decidability of the equa-tional theory of Kleene Allegories is equivalent to that of language equivalence for Petri automata. Third, this transformation may be used to reason syntactically about the occurrence nets of a safe Petri net, provided they are parallel series

    Petri automata for Kleene allegories

    Get PDF
    International audienceKleene algebra axioms are complete with respect to both language models and binary relation models. In particular, two regular expressions recognise the same language if and only if they are universally equivalent in the model of binary relations.We consider Kleene allegories, i.e. Kleene algebra with two additional operations which are natural in binary relation models: intersection and converse. While regular languages are closed under those operations, the above characterisation breaks. Instead, we give a characterisation in terms of languages of directed and labelled graphs. We then design a finite automata model allowing to recognise such graphs, by taking inspiration from Petri nets.This model allows us to obtain decidability of identity-free relational Kleene lattices, i.e., the equational theory generated by binary relations on the signature of regular expressions with intersection, but where one forbids unit. This restriction is used to ensure that the corresponding graphs are acyclic. The decidability of graph-language equivalence in the full model remains open

    Reversible Kleene lattices

    Get PDF
    International audienceWe investigate the equational theory of reversible Kleene lattices, that is algebras of languages with the regular operations (union, composition and Kleene star), together with the intersection and mirror image. Building on results by Andréka, Mikulás and Németi from 2011, we construct the free representation of this algebra. We then provide an automaton model to compare representations. These automata are adapted from Petri automata, which we introduced with Pous in 2015 to tackle a similar problem for algebras of binary relations. This allows us to show that testing the validity of equations in this algebra is decidable, and in fact ExpSpace-complete

    Decidability of Identity-free Relational Kleene Lattices

    Get PDF
    National audienceFamilies of binary relations are important interpretations of regular expressions, and the equivalence of two regular expressions with respect to their relational interpretations is decidable: the problem reduces to the equality of the denoted regular languages.Putting together a few results from the literature, we first make explicit a generalisation of this reduction, for regular expressions extended with converse and intersection: instead of considering sets of words (i.e., formal languages), one has to consider sets of directed and labelled graphs.We then focus on identity-free regular expressions with intersection—a setting where the above graphs are acyclic—and we show that the corresponding equational theory is decidable. We achieve this by defining an automaton model, based on Petri Nets, to recognise these sets of acyclic graphs, and by providing an algorithm to compare such automata

    Completeness for Identity-free Kleene Lattices

    Get PDF
    We provide a finite set of axioms for identity-free Kleene lattices, which we prove sound and complete for the equational theory of their relational models. Our proof builds on the completeness theorem for Kleene algebra, and on a novel automata construction that makes it possible to extract axiomatic proofs using a Kleene-like algorithm

    On Series-Parallel Pomset Languages: Rationality, Context-Freeness and Automata

    Get PDF
    Concurrent Kleene Algebra (CKA) is a formalism to study concurrent programs. Like previous Kleene Algebra extensions, developing a correspondence between denotational and operational perspectives is important, for both foundations and applications. This paper takes an important step towards such a correspondence, by precisely relating bi-Kleene Algebra (BKA), a fragment of CKA, to a novel type of automata, pomset automata (PAs). We show that PAs can implement the BKA semantics of series-parallel rational expressions, and that a class of PAs can be translated back to these expressions. We also characterise the behavior of general PAs in terms of context-free pomset grammars; consequently, universality, equivalence and series-parallel rationality of general PAs are undecidable.Comment: Accepted manuscrip

    Non Axiomatisability of Positive Relation Algebras with Constants, via Graph Homomorphisms

    Get PDF
    We study the equational theories of composition and intersection on binary relations, with or without their associated neutral elements (identity and full relation). Without these constants, the equational theory coincides with that of semilattice-ordered semigroups. We show that the equational theory is no longer finitely based when adding one or the other constant, refuting a conjecture from the literature. Our proofs exploit a characterisation in terms of graphs and homomorphisms, which we show how to adapt in order to capture standard equational theories over the considered signatures

    Graph Characterization of the Universal Theory of Relations

    Get PDF

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    corecore