1,019 research outputs found

    Application of Artificial Intelligence in IoT Security for Crop Yield Prediction

    Get PDF
    This research explores the application of Artificial Intelligence (AI) in the Internet of Things (IoT) for crop yield prediction in agriculture. IoT devices, like sensors and drones, collect data on temperature, humidity, soil moisture, and crop health. AI algorithms process and integrate this data to provide a comprehensive view of the agricultural environment.AI-driven anomaly detection helps identify threats to crop yield, such as pests, diseases, and adverse weather conditions. Predictive analytics, based on historical and real-time data, forecast crop yield for informed decision-making in irrigation and fertilization.AI-powered image recognition detects early signs of pests and diseases, aiding timely treatment to prevent crop losses. Resource optimization allocates water and fertilizers efficiently, minimizing waste and environmental impact.AI-driven decision support systems offer personalized recommendations for ideal planting schedules and crop rotations, maximizing yield. Autonomous farming integrates AI into machinery for precision tasks like planting and monitoring.Secure communication protocols protect sensitive agricultural data from cyber threats, ensuring data integrity and privacy

    Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review

    Get PDF
    Crop protection is a key activity for the sustainability and feasibility of agriculture in a current context of climate change, which is causing the destabilization of agricultural practices and an increase in the incidence of current or invasive pests, and a growing world population that requires guaranteeing the food supply chain and ensuring food security. In view of these events, this article provides a contextual review in six sections on the role of artificial intelligence (AI), machine learning (ML) and other emerging technologies to solve current and future challenges of crop protection. Over time, crop protection has progressed from a primitive agriculture 1.0 (Ag1.0) through various technological developments to reach a level of maturity closelyin line with Ag5.0 (section 1), which is characterized by successfully leveraging ML capacity and modern agricultural devices and machines that perceive, analyze and actuate following the main stages of precision crop protection (section 2). Section 3 presents a taxonomy of ML algorithms that support the development and implementation of precision crop protection, while section 4 analyses the scientific impact of ML on the basis of an extensive bibliometric study of >120 algorithms, outlining the most widely used ML and deep learning (DL) techniques currently applied in relevant case studies on the detection and control of crop diseases, weeds and plagues. Section 5 describes 39 emerging technologies in the fields of smart sensors and other advanced hardware devices, telecommunications, proximal and remote sensing, and AI-based robotics that will foreseeably lead the next generation of perception-based, decision-making and actuation systems for digitized, smart and real-time crop protection in a realistic Ag5.0. Finally, section 6 highlights the main conclusions and final remarks

    Sustainable Agriculture and Advances of Remote Sensing (Volume 2)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publication of the results, among others

    Technologies, methods, and approaches on detection system of plant pests and diseases

    Get PDF
    This research aims to identify the technology, methods, approaches applied in developing plant pest and disease detection systems. For this purpose, it mainly reviews systematically related research on identification, monitoring, detection, and control techniques of plant pests and diseases using a computer or mobile technology. Evidence from the literature shows previous both academia and practitioners have used various technologies, methods and approaches for developing detection system of plant pests and diseases. Some technologies have been applied for the detection system, such as web-based, mobile-based, and internet of things (IoT). Furthermore, the dominant approaches are expert system and deep learning. While backward chaining, forward chaining, fuzzy model, genetic algorithm (GA), K-means clustering, Bayesian networks and incremental learning, Naïve Bayes and Certainty Factors, Convolutional Neural Network, and Decision Tree are the most frequently methods applied in the previous researches. The review also indicated that no single technology or technique is best for developing accurate pest/disease detection system. Instead, the combination of technologies, methods, and approaches resulted in different performance and accuracies. A possible explanation for this is because the systems are used for detecting, controlling and monitoring various plants, such as corn, onion, wheat, rice, mango, flower, and others that are different. This research contributes by providing a reference for technologies, methods, and approaches to the detection system for plant pests and diseases. Also, it adds a way of literature review. This research has implications for researchers as a reference for researching in the computer system, especially for the detection of plant pest and disease research. Hence, this research also extends the body of knowledge of the intelligence system, deep learning, and computer science. For practice, the method references can be used for developing technology for detecting plant pest and disease

    Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture

    Get PDF
    The use of sensors and the Internet of Things (IoT) is key to moving the world\u27s agriculture to a more productive and sustainable path. Recent advancements in IoT, Wireless Sensor Networks (WSN), and Information and Communication Technology (ICT) have the potential to address some of the environmental, economic, and technical challenges as well as opportunities in this sector. As the number of interconnected devices continues to grow, this generates more big data with multiple modalities and spatial and temporal variations. Intelligent processing and analysis of this big data are necessary to developing a higher level of knowledge base and insights that results in better decision making, forecasting, and reliable management of sensors. This paper is a comprehensive review of the application of different machine learning algorithms in sensor data analytics within the agricultural ecosystem. It further discusses a case study on an IoT based data-driven smart farm prototype as an integrated food, energy, and water (FEW) system

    A Comprehensive Review on Intelligent Techniques in Crop Pests and Diseases

    Get PDF
    Artificial intelligence (AI) has transformative potential in the agricultural sector, particularly in managing and preventing crop diseases and pest infestations. This review discusses the significance of early detection and precise diagnosis of various AI tools and techniques for disease identification, such as image processing, machine learning, and deep learning. It also addresses the challenges of AI implementation in agriculture, including data quality, costs, and ethical concerns. The analysis classifies the hurdles and AI offers benefits such as improved resource management, timely interventions, and enhanced productivity. Collaborative efforts are essential to harness AI's potential for sustainable and resilient agriculture

    Prediction of Pest Insect Appearance Using Sensors and Machine Learning

    Get PDF
    The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insect’s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields

    Advances in Deep Learning Algorithms for Agricultural Monitoring and Management

    Get PDF
    This study examines the transformative role of deep learning algorithms in agricultural monitoring and management. Deep learning has shown remarkable progress in predicting crop yields based on historical weather, soil, and crop data, thereby enabling optimized planting and harvesting strategies. In disease and pest detection, image recognition technologies such as Convolutional Neural Networks (CNNs) can analyze high-resolution images of crops to identify early signs of diseases or pest infestations, allowing for swift and effective interventions. In the context of precision agriculture, these advanced techniques offer resource efficiency by enabling targeted treatments within specific field areas, significantly reducing waste. The paper also sheds light on the application of deep learning in analyzing vast amounts of remote sensing and satellite imagery data, aiding in real-time monitoring of crop growth, soil moisture, and other critical environmental factors. In the face of climate change, advanced algorithms provide valuable insights into its potential impact on agriculture, thereby aiding the formulation of effective adaptation strategies. Automated harvesting and sorting, facilitated by robotics powered by deep learning, are also investigated, as they promise increased efficiency and reduced labor costs. Moreover, machine learning models have shown potential in optimizing the entire agricultural supply chain, ensuring minimal waste and optimum product quality. Lastly, the study highlights the power of deep learning in integrating multi-source data, from weather stations to satellites, to form comprehensive monitoring systems that allow real-time decision-making

    LITERATURE REVIEW IOT SOFTWARE ARCHITECTURE ON AGRICULTURE

    Get PDF
    Context – Internet of Things (IoT) interrelates computing devices, machines, animals, or people and things that use the power of internet usage to utilize data to be much more usable. Food is one of the mandatory human needs to survive, and most of it is produced by agriculture. Using IoT in agriculture needs appropriate software architecture that plays a prominent role in optimizing the gain. Objective and Method – Implementing a solution in a specific field requires a particular condition that belongs to it. The objectives of this research study are to classify the state of the art IoT solution in the software architecture domain perspective. We have used the Evidence- Based Software Engineering (EBSE) and have 24 selected existing studies related to software architecture and IoT solutions to map to the software architecture needed on IoT solutions in agriculture. Result and Implications – The results of this study are the classification of various IoT software architecture solutions in agriculture. The highlighted field, especially in the areas of cloud, big data, integration, and artificial intelligence/machine learning. We mapped the agriculture taxonomy classification with IoT software architecture. For future work, we recommend enhancing the classification and mapping field to the utilization of drones in agriculture since drones can reach a vast area that is very fit for fertilizing, spraying, or even capturing crop images with live cameras to identify leaf disease
    corecore