409 research outputs found

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems

    Get PDF
    We present optimality conditions for bilevel optimal control problems where the upper level, to be solved by a leader, is a scalar optimal control problem and the lower level, to be solved by several followers, is a multiobjective convex optimal control problem. Multiobjective optimal control problems arise in many application areas where several conflicting objectives need to be considered. Minimize several objective functionals leads to solutions such that none of the objective functional values can be improved further without deteriorating another. The set of all such solutions is referred to as efficient (also called Pareto optimal, noninferior, or nondominated) set of solutions. The lower level of the semivectorial bilevel optimal control problems can be considered to be associated to a ”grande coalition” of a p-player cooperative differential game, every player having its own objective and control function. We consider situations in which these p-?players react as ”followers” to every decision imposed by a ”leader” (who acts at the so-called upper level). The best reply correspondence of the followers being in general non uniquely determined, the leader cannot predict the followers choice simply on the basis of his rational behavior. So, the choice of the best strategy from the leader point of view depends of how the followers choose a strategy among his best responses. In this paper, we will consider two (extreme) possibilities: (i) the optimistic situation, when for every decison of the leader, the followers will choose a strategy amongst the efficient controls which minimizes the (scalar) objective of the leader; in this case the leader will choose a strategy which minimizes the best he can obtain amongst all the best responses of the followers: (ii) the pessimistic situation, when the followers can choose amongst the efficient controls one which maximizes the (scalar) objective of the leader; in this case the leader will choose a strategy which minimizes the worst he could obtain amongst all the best responses of the followers. This paper continues the research initiated in [17] where existence results for these problems have been obtained.

    A regularization method for ill-posed bilevel optimization problems

    Get PDF
    We present a regularization method to approach a solution of the pessimistic formulation of ill -posed bilevel problems . This allows to overcome the difficulty arising from the non uniqueness of the lower level problems solutions and responses. We prove existence of approximated solutions, give convergence result using Hoffman-like assumptions. We end with objective value error estimates.Comment: 19 page

    Achieving an optimal trade-off between revenue and energy peak within a smart grid environment

    Get PDF
    We consider an energy provider whose goal is to simultaneously set revenue-maximizing prices and meet a peak load constraint. In our bilevel setting, the provider acts as a leader (upper level) that takes into account a smart grid (lower level) that minimizes the sum of users' disutilities. The latter bases its decisions on the hourly prices set by the leader, as well as the schedule preferences set by the users for each task. Considering both the monopolistic and competitive situations, we illustrate numerically the validity of the approach, which achieves an 'optimal' trade-off between three objectives: revenue, user cost, and peak demand

    Optimistic Variants of Single-Objective Bilevel Optimization for Evolutionary Algorithms

    Get PDF
    Single-objective bilevel optimization is a specialized form of constraint optimization problems where one of the constraints is an optimization problem itself. These problems are typically non-convex and strongly NP-Hard. Recently, there has been an increased interest from the evolutionary computation community to model bilevel problems due to its applicability in real-world applications for decision-making problems. In this work, a partial nested evolutionary approach with a local heuristic search has been proposed to solve the benchmark problems and have outstanding results. This approach relies on the concept of intermarriage-crossover in search of feasible regions by exploiting information from the constraints. A new variant has also been proposed to the commonly used convergence approaches, i.e., optimistic and pessimistic. It is called an extreme optimistic approach. The experimental results demonstrate the algorithm converges differently to known optimum solutions with the optimistic variants. Optimistic approach also outperforms pessimistic approach. Comparative statistical analysis of our approach with other recently published partial to complete evolutionary approaches demonstrates very competitive results
    corecore