13,233 research outputs found

    Processing of Electronic Health Records using Deep Learning: A review

    Full text link
    Availability of large amount of clinical data is opening up new research avenues in a number of fields. An exciting field in this respect is healthcare, where secondary use of healthcare data is beginning to revolutionize healthcare. Except for availability of Big Data, both medical data from healthcare institutions (such as EMR data) and data generated from health and wellbeing devices (such as personal trackers), a significant contribution to this trend is also being made by recent advances on machine learning, specifically deep learning algorithms

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    Personalised mobile services supporting the implementation of clinical guidelines

    Get PDF
    Telemonitoring is emerging as a compelling application of Body Area Networks (BANs). We describe two health BAN systems developed respectively by a European team and an Australian team and discuss some issues encountered relating to formalization of clinical knowledge to support real-time analysis and interpretation of BAN data. Our example application is an evidence-based telemonitoring and teletreatment application for home-based rehabilitation. The application is intended to support implementation of a clinical guideline for cardiac rehabilitation following myocardial infarction. In addition to this the proposal is to establish the patient’s individual baseline risk profile and, by real-time analysis of BAN data, continually re-assess the current risk level in order to give timely personalised feedback. Static and dynamic risk factors are derived from literature. Many sources express evidence probabilistically, suggesting a requirement for reasoning with uncertainty; elsewhere evidence requires qualitative reasoning: both familiar modes of reasoning in KBSs. However even at this knowledge acquisition stage some issues arise concerning how best to apply the clinical evidence. Furthermore, in cases where insufficient clinical evidence is currently available, telemonitoring can yield large collections of clinical data with the potential for data mining in order to furnish more statistically powerful and accurate clinical evidence

    Enriched elderly virtual profiles by means of a multidimensional integrated assessment platform

    Get PDF
    The pressure over Healthcare systems is increasing in most developed countries. The generalized aging of the population is one of the main causes. This situation is even worse in underdeveloped, sparsely populated regions like Extremadura in Spain or Alentejo in Portugal. The authors propose to use the Situational-Context, a technique to seamlessly adapt Internet of Things systems to the needs and preferences of their users, for virtually modeling the elderly. These models could be used to enhance the elderly experience when using those kind of systems without raising the need for technical skills or the costs of implementing such systems by the regional healthcare systems. In this paper, the integration of a multidimensional integrated assessment platform with such virtual profiles is presented. The assessment platform provides and additional source of information for the virtual profiles that is used to better adapt existing systems to the elders needs

    360 Quantified Self

    Get PDF
    Wearable devices with a wide range of sensors have contributed to the rise of the Quantified Self movement, where individuals log everything ranging from the number of steps they have taken, to their heart rate, to their sleeping patterns. Sensors do not, however, typically sense the social and ambient environment of the users, such as general life style attributes or information about their social network. This means that the users themselves, and the medical practitioners, privy to the wearable sensor data, only have a narrow view of the individual, limited mainly to certain aspects of their physical condition. In this paper we describe a number of use cases for how social media can be used to complement the check-up data and those from sensors to gain a more holistic view on individuals' health, a perspective we call the 360 Quantified Self. Health-related information can be obtained from sources as diverse as food photo sharing, location check-ins, or profile pictures. Additionally, information from a person's ego network can shed light on the social dimension of wellbeing which is widely acknowledged to be of utmost importance, even though they are currently rarely used for medical diagnosis. We articulate a long-term vision describing the desirable list of technical advances and variety of data to achieve an integrated system encompassing Electronic Health Records (EHR), data from wearable devices, alongside information derived from social media data.Comment: QCRI Technical Repor

    Model Driven Development of m-Health Systems (with a Touch of Formality)

    Get PDF
    We propose a model driven design and development methodology augmented with formal validation and verification (V&V) for the development of mobile health systems. Systems which deliver healthcare services remotely should be developed using robust and trusted engineering technologies. The methodology instantiates steps in the MDA trajectory using formal methods to verify critical properties of models, to test preservation of those properties in the derived implementations and to effect model transformations by correctness preserving transformations. The methodology is described and some initial modelling is reported
    corecore