19,142 research outputs found

    Pervasive and intelligent decision support in Intensive Medicine – the complete picture

    Get PDF
    Series : Lecture notes in computer science (LNCS), vol. 8649In the Intensive Care Units (ICU) it is notorious the high number of data sources available. This situation brings more complexity to the way of how a professional makes a decision based on information provided by those data sources. Normally, the decisions are based on empirical knowledge and common sense. Often, they don’t make use of the information provided by the ICU data sources, due to the difficulty in understanding them. To overcome these constraints an integrated and pervasive system called INTCare has been deployed. This paper is focused in presenting the system architecture and the knowledge obtained by each one of the decision modules: Patient Vital Signs, Critical Events, ICU Medical Scores and Ensemble Data Mining. This system is able to make hourly predictions in terms of organ failure and outcome. High values of sensitivity where reached, e.g. 97.95% for the cardiovascular system, 99.77% for the outcome. In addition, the system is prepared for tracking patients’ critical events and for evaluating medical scores automatically and in real-time.(undefined

    A Real-Time intelligent system for tracking patient condition

    Get PDF
    Hospitals have multiple data sources, such as embedded systems, monitors and sensors. The number of data available is increasing and the information are used not only to care the patient but also to assist the decision processes. The introduction of intelligent environments in health care institutions has been adopted due their ability to provide useful information for health professionals, either in helping to identify prognosis or also to understand patient condition. Behind of this concept arises this Intelligent System to track patient condition (e.g. critic events) in health care. This system has the great advantage of being adaptable to the environment and user needs. The system is focused in identifying critic events from data streaming (e.g. vital signs and ventilation) which is particularly valuable for understanding the patient’s condition. This work aims to demonstrate the process of creating an intelligent system capable of operating in a real environment using streaming data provided by ventilators and vital signs monitors. Its development is important to the physician because becomes possible crossing multiple variables in real-time by analyzing if a value is critic or not and if their variation has or not clinical importance

    Pervasive Business Intelligence: A New Trend in Critical Healthcare

    Get PDF
    In the field of intensive medicine, presentation of medical information is identified as a major concern for the health professionals, since it can be a great aid when it is necessary to make decisions, of varying gravity, for the patient's state. The way in which this information is presented, and especially when it is presented, may make it difficult for the intensivists within intense healthcare units to understand a patient's state in a timely fashion. Should there be a need to cross various types of clinical data from various sources, the situation worsens considerably. To support the health professional's decision-making process, the Pervasive Business Intelligence (PBI) Systems are a forthcoming field. Based on this principle, the current study approaches the way to present information about the patients, after they are received in a BI system, making them available at any place and at any time for the intensivists that may need it for the decision-making. The patient's history will, therefore, be available, allowing examination of the vital signs data, what medicine that they might need, health checks performed, among others. Then, it is of vital importance, to make these conclusions available to the health professionals every time they might need, so as to aid them in the decision-making. This study aims to make a stance by approaching the theme of PBI in Critical Healthcare. The main objective is to understand the underlying concepts and the assets of BI solutions with Pervasive characteristics. Perhaps consider it a sort of guide or a path to follow for those who wish to insert Pervasive into Business Intelligence in Healthcare area.Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013info:eu-repo/semantics/publishedVersio

    Pervasive patient timeline for intensive care units

    Get PDF
    This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.FCT -Fundação para a Ciência e a Tecnologia(PTDC/EEI-SII/1302/2012

    Real-Time models to predict the use of vasopressors in monitored patients

    Get PDF
    The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors

    Optimization techniques to detect early ventilation extubation in intensive care units

    Get PDF
    The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.This work has been supported by FCT-Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013. The authors would like to thank FCT for the financial support through the contract PTDC/EEI - SII/1302/2012 (INTCare II

    Pervasive adaptive data acquisition gateway for critical healthcare

    Get PDF
    The data acquisition process in real-time is fundamental to provide appropriate services and improve health professionals decision. In this paper a pervasive adaptive data acquisition architecture of medical devices (e.g. vital signs, ventilators and sensors) is presented. The architecture was deployed in a real context in an Intensive Care Unit. It is providing clinical data in real-time to the INTCare system. The gateway is composed by several agents able to collect a set of patients’ variables (vital signs, ventilation) across the network. The paper shows as example the ventilation acquisition process. The clients are installed in a machine near the patient bed. Then they are connected to the ventilators and the data monitored is sent to a multithreading server which using Health Level Seven protocols records the data in the database. The agents associated to gateway are able to collect, analyse, interpret and store the data in the repository. This gateway is composed by a fault tolerant system that ensures a data store in the database even if the agents are disconnected. The gateway is pervasive, universal, and interoperable and it is able to adapt to any service using streaming data.This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope UID/CEC/00319/2013 and the contract PTDC/EEI-SII/1302/2012

    Critical events in mechanically ventilated patients

    Get PDF
    Mechanical Ventilation is an artificial way to help a Patient to breathe. This procedure is used to support patients with respiratory diseases however in many cases it can provoke lung damages, Acute Respiratory Diseases or organ failure. With the goal to early detect possible patient breath problems a set of limit values was defined to some variables monitored by the ventilator (Average Ventilation Pressure, Compliance Dynamic, Flow, Peak, Plateau and Support Pressure, Positive end-expiratory pressure, Respiratory Rate) in order to create critical events. A critical event is verified when a patient has a value higher or lower than the normal range defined for a certain period of time. The values were defined after elaborate a literature review and meeting with physicians specialized in the area. This work uses data streaming and intelligent agents to process the values collected in real-time and classify them as critical or not. Real data provided by an Intensive Care Unit were used to design and test the solution. In this study it was possible to understand the importance of introduce critical events for Mechanically Ventilated Patients. In some cases a value is considered critical (can trigger an alarm) however it is a single event (instantaneous) and it has not a clinical significance for the patient. The introduction of critical events which crosses a range of values and a pre-defined duration contributes to improve the decision-making process by decreasing the number of false positives and having a better comprehension of the patient condition.- Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013 . The authors would like to thank FCT (Foundation of Science and Technology, Portugal) for the financial support through the contract PTDC/EEI-SII/1302/2012 (INTCare II

    Towards of a real-time Big Data architecture to intensive care

    Get PDF
    These days the exponential increase in the volume and variety of data stored by companies and organizations of various sectors of activity, has required to organizations the search for new solutions to improve their services and/or products, taking advantage of technological evolution. As a response to the inability of organizations to process large quantities and varieties of data, in the technological market, arise the Big Data. This emerging concept defined mainly by the volume, velocity and variety has evolved greatly in part by its ability to generate value for organizations in decision making. Currently, the health care sector is one of the five sectors of activity where the potential of Big Data growth most stands out. However, the way to go is still long and in fact there are few organizations, related to health care, that are taking advantage of the true potential of Big Data. The main target of this research is to produce a real-time Big Data architecture to the INTCare system, of the Centro Hospitalar do Porto, using the main open source big data solution, the Apache Hadoop. As a result of the first phase of this research we obtained a generic architecture who can be adopted by other Intensive Care Units."This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013." This work is also supported by the Deus ex Machina (DEM): Symbiotic technology for societal efficiency gains - NORTE-01-0145-FEDER-00002

    Improving quality of medical service with mobile health software

    Get PDF
    An increasing number of m-Health applications are being developed benefiting health service delivery. In this paper, a new methodology based on the principle of calm computing applied to diagnostic and therapeutic procedure reporting is proposed. A mobile application was designed for the physicians of one of the Portuguese major hospitals, which takes advantage of a multi-agent interoperability platform, the Agency for the Integration, Diffusion and Archive (AIDA). This application allows the visualization of inpatients and outpatients medical reports in a quicker and safer manner, in addition to offer a remote access to information. This project shows the advantages in the use of mobile software in a medical environment but the first step is always to build or use an interoperability platform, flexible, adaptable and pervasive. The platform offers a comprehensive set of services that restricts the development of mobile software almost exclusively to the mobile user interface design. The technology was tested and assessed in a real context by intensivists
    corecore