175,085 research outputs found

    A cross-sectional analysis of pharmaceutical industry-funded events for health professionals in Australia

    Get PDF
    Objectives: To analyse patterns and characteristics of pharmaceutical industry sponsorship of events for Australian health professionals and to understand the implications of recent changes in transparency provisions that no longer require reporting of payments for food and beverages. Design: Cross-sectional analysis. Participants and setting: 301 publicly available company transparency reports downloaded from the website of Medicines Australia, the pharmaceutical industry trade association, covering the period from October 2011 to September 2015. Results: Forty-two companies sponsored 116 845 events for health professionals, on average 608 per week with 30 attendees per event. Events typically included a broad range of health professionals: 82.0% included medical doctors, including specialists and primary care doctors, and 38.3% trainees. Oncology, surgery and endocrinology were the most frequent clinical areas of focus. Most events (64.2%) were held in a clinical setting. The median cost per event was A263(IQRA263 (IQR A153–1195) and over 90% included food and beverages. Conclusions: Over this 4-year period, industry-sponsored events were widespread and pharmaceutical companies maintained a high frequency of contact with health professionals. Most events were held in clinical settings, suggesting a pervasive commercial presence in everyday clinical practice. Food and beverages, known to be associated with changes to prescribing practice, were almost always provided. New Australian transparency provisions explicitly exclude meals from the reporting requirements; thus, a large proportion of potentially influential payments from pharmaceutical companies to health professionals will disappear from public view

    Inductive power transfer for on-body sensors defining a design space for safe, wirelessly powered on-body health sensors

    Get PDF
    Pervasive Health: 9th International Conference on Pervasive Computing Technologies for Healthcare, 20-23 May 2015, Istanbul, TurkeyDesigners of on-body health sensing devices face a difficult choice. They must either minimise the power consumption of devices, which in reality means reducing the sensing capabilities, or build devices that require regular battery changes or recharging. Both options limit the effectiveness of devices. Here we investigate an alternative. This paper presents a method of designing safe, wireless, inductive power transfer into on-body sensor products. This approach can produce sensing devices that can be worn for longer durations without the need for human intervention, whilst also having greater sensing and data capture capabilities. The paper addresses significant challenges in achieving this aim, in particular: device safety, sufficient power transfer, and human factors regarding device geometry. We show how to develop a device that meets stringent international safety guidelines for electromagnetic energy on the body and describe a design space that allows designers to make trade-offs that balance power transfer with other constraints, e.g. size and bulk, that affect the wearability of devices. Finally we describe a rapid experimental method to investigate the optimal placement of on-body devices and the actual versus theoretical power transfer for on-body, inductively powered devices. EPSR

    Int J Audiol

    Get PDF
    Objective:To determine whether acoustic reflexes are pervasive (i.e., known with 95 % confidence to be observed in at least 95 % of people) by examining the frequency of occurrence using a friction-fit diagnostic middle ear analyzer.Design:A group of 285 adult participants with very good hearing sensitivity underwent audiometric and middle ear testing. Acoustic reflexes were tested ipsilaterally and contralaterally in both ears across a range of elicitor frequencies. Two automated methods were used to detect the presence of an acoustic reflex.Results:There were no conditions in which the proportion of participants exhibiting acoustic reflexes was high enough to be deemed pervasive. Ipsilateral reflexes were more likely to be observed than contralateral reflexes and reflexes were more common at .5 and 1 kHz elicitor frequencies as compared to 2 and 4 kHz elicitor frequencies.Conclusions:Acoustic reflexes are common among individuals with good hearing. However, acoustic reflexes cannot be considered pervasive and should not be included in damage risk criteria and health hazard assessments for impulsive noise.200-2015-M-63121/ImCDC/Intramural CDC HHS/United States2019-09-03T00:00:00Z29256642PMC6719315661

    The Internet of Hackable Things

    Get PDF
    The Internet of Things makes possible to connect each everyday object to the Internet, making computing pervasive like never before. From a security and privacy perspective, this tsunami of connectivity represents a disaster, which makes each object remotely hackable. We claim that, in order to tackle this issue, we need to address a new challenge in security: education

    Evaluating the impact of physical activity apps and wearables: interdisciplinary review

    Get PDF
    Background: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. Objectives: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. Method: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. Results: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). Conclusions: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines

    Can smartwatches replace smartphones for posture tracking?

    Get PDF
    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed
    corecore