7 research outputs found

    Time domain analog circuit simulation

    Get PDF
    AbstractRecent developments of new methods for simulating electric circuits are described. Emphasis is put on methods that fit existing datastructures for backward differentiation formulae methods. These methods can be modified to apply to hierarchically organized datastructures, which allows for efficient simulation of large designs of circuits in the electronics industry

    A Comparison between High-order Temporal Integration Methods Applied to the Discontinuous Galerkin Discretized Euler Equations

    Get PDF
    Abstract In this work we present a high-order Discontinuous Galerkin (DG) space approximation coupled with two high-order temporal integration methods for the numerical solution of time-dependent compressible flows. The time integration methods analyzed are the explicit Strong-Stability-Preserving Runge-Kutta (SSPRK) and the Two Implicit Advanced Step-point (TIAS) schemes. Their accuracy and efficiency are evaluated by means of an inviscid test case for which an exact solution is available. The study is carried out for several time-steps using different polynomial order approximations and several levels of grid refinement. The effect of mesh irregularities on the accuracy is also investigated by considering randomly perturbed meshes. The analysis of the results has the twofold objective of (i) assessing the performances of the temporal schemes in the context of the high-order DG discretization and(ii) determining if high-order implicit schemes can displace widely used high-order explicit schemes

    Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems

    Get PDF
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the part” applied to all quantities (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). The methodology uses a computational device called the Infinity Computer (patented in USA and EU) working numerically (recall that traditional theories work with infinities and infinitesimals only symbolically) with infinite and infinitesimal numbers that can be written in a positional numeral system with an infinite radix. It is argued that numeral systems involved in computations limit our capabilities to compute and lead to ambiguities in theoretical assertions, as well. The introduced methodology gives the possibility to use the same numeral system for measuring infinite sets, working with divergent series, probability, fractals, optimization problems, numerical differentiation, ODEs, etc. (recall that traditionally different numerals lemniscate; Aleph zero, etc. are used in different situations related to infinity). Numerous numerical examples and theoretical illustrations are given. The accuracy of the achieved results is continuously compared with those obtained by traditional tools used to work with infinities and infinitesimals. In particular, it is shown that the new approach allows one to observe mathematical objects involved in the Hypotheses of Continuum and the Riemann zeta function with a higher accuracy than it is done by traditional tools. It is stressed that the hardness of both problems is not related to their nature but is a consequence of the weakness of traditional numeral systems used to study them. It is shown that the introduced methodology and numeral system change our perception of the mathematical objects studied in the two problems

    Multi-Value Numerical Modeling for Special Di erential Problems

    Get PDF
    2013 - 2014The subject of this thesis is the analysis and development of new numerical methods for Ordinary Di erential Equations (ODEs). This studies are motivated by the fundamental role that ODEs play in applied mathematics and applied sciences in general. In particular, as is well known, ODEs are successfully used to describe phenomena evolving in time, but it is often very di cult or even impossible to nd a solution in closed form, since a general formula for the exact solution has never been found, apart from special cases. The most important cases in the applications are systems of ODEs, whose exact solution is even harder to nd; then the role played by numerical integrators for ODEs is fundamental to many applied scientists. It is probably impossible to count all the scienti c papers that made use of numerical integrators during the last century and this is enough to recognize the importance of them in the progress of modern science. Moreover, in modern research, models keep getting more complicated, in order to catch more and more peculiarities of the physical systems they describe, thus it is crucial to keep improving numerical integrator's e ciency and accuracy. The rst, simpler and most famous numerical integrator was introduced by Euler in 1768 and it is nowadays still used very often in many situations, especially in educational settings because of its immediacy, but also in the practical integration of simple and well-behaved systems of ODEs. Since that time, many mathematicians and applied scientists devoted their time to the research of new and more e cient methods (in terms of accuracy and computational cost). The development of numerical integrators followed both the scienti c interests and the technological progress of the ages during whom they were developed. In XIX century, when most of the calculations were executed by hand or at most with mechanical calculators, Adams and Bashfort introduced the rst linear multistep methods (1855) and the rst Runge- Kutta methods appeared (1895-1905) due to the early works of Carl Runge and Martin Kutta. Both multistep and Runge-Kutta methods generated an incredible amount of research and of great results, providing a great understanding of them and making them very reliable in the numerical integration of a large number of practical problems. It was only with the advent of the rst electronic computers that the computational cost started to be a less crucial problem and the research e orts started to move towards the development of problem-oriented methods. It is probably possible to say that the rst class of problems that needed an ad-hoc numerical treatment was that of sti problems. These problems require highly stable numerical integrators (see Section ??) or, in the worst cases, a reformulation of the problem itself. Crucial contributions to the theory of numerical integrators for ODEs were given in the XX century by J.C. Butcher, who developed a theory of order for Runge-Kutta methods based on rooted trees and introduced the family of General Linear Methods together with K. Burrage, that uni ed all the known families of methods for rst order ODEs under a single formulation. General Linear Methods are multistagemultivalue methods that combine the characteristics of Runge-Kutta and Linear Multistep integrators... [edited by Author]XIII n.s

    Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review

    Get PDF
    A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances

    Development and evaluation of a wind tunnel manoeuvre rig

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Perturbed MEBDF methods

    Get PDF
    We investigate MEBDF methods of Cash from general linear methods point of view. Some perturbations of these methods are constructed which preserve the order of these formulas and improve their stability properties
    corecore