1,066 research outputs found

    Design of hFGF1 Variant(s) with Increased Stability and Enhanced Bioactivity

    Get PDF
    Fibroblast growth factors (FGFs) are involved in various cellular processes such as cell growth,proliferation, differentiation, migration, angiogenesis, wound healing and embryonic development. Human acidic fibroblast growth factor (hFGF1) binds non-selectively to all the four FGF-receptors and is therefore considered as a powerful mitogen with broadest specificity. However, pharmacological applications of hFGF1 are restricted due to the low thermal stability of the growth factor. hFGF1 has low thermodynamic stability under physiological temperatures which leads to impairment of cellular signaling process thereby preventing its potential mitogenic properties. hFGF1 has a heparin binding pocket at the C-terminus which comprises of positively charges residues. The interaction between the positively charged amino acids lead to electrostatic repulsions, thereby rendering instability. To overcome this instability, hFGF1 binds to the glycosaminoglycan, heparin which decreases the repulsion (s) between the positively charged residues. However, binding of heparin poses a challenge for the use of hFGF1 in wound healing. Thrombin converts fibrinogen to fibrin and works as first line of defense by blocking the loss of blood. Intriguingly, thrombin also binds to heparin. Studies on wtFGF1 have demonstrated the presence of secondary thrombin cleavage site in hFGF1. Thus, thrombin is known to cleave hFGF1 at Arg 136 and render it biologically inactive. Usually, it is considered that dependency of hFGF1 to heparin increases the plausibility of thrombin-induced degradation of the growth factor. To tackle these downfalls, I have designed and constructed several point mutations in hFGF1 to improve the thermal stability and cell proliferation ability and to subside the heparin binding affinity of the growth factor. In this dissertation, I studied single, double, triple, quadruple, and penta variants of Q54P, S61L, H107S, K126N, and R136E and examined the thermal stability, bioactivity, and heparin dependency of the protein. These studies indicate that site - directed mutagenesis in hFGF1 can impact the inherent stability of the growth factor and role of heparin in hFGF1-FGFR receptor interaction and activation

    Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome

    Get PDF
    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans

    Structure of S. aureus HPPK and discovery of a new inhibitor

    Get PDF
    The first structural and biophysical data on the folate pathway enzyme and drug target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), from the pathogenic bacterium Staphylococcus aureus is presented. HPPK is the second essential enzyme in the folate biosynthesis pathway, responsible for catalysing pyrophosphoryl transfer from cofactor (ATP) to the substrate (6-hydroxymethyl- 7,8-dihydropterin, HMDP). In-silico screening led to the discovery of a substrate competitive inhibitor, San1, which was subsequently co-crystallised with HPPK. A 1.65 Γ… resolution x-ray structure showed this to bind at the pterin site sharing many of the key intermolecular interactions of the substrate. ITC and SPR measurements yielded an equilibrium binding constant, Kd, of ~13 ΞΌM for San1. An IC50 of ~12 ΞΌM was determined by means of a new convenient tri-enzyme-coupled spectrophotometric assay. ITC and SPR further showed that the San1 inhibitor has no requirement for magnesium or ATP cofactor for competitive binding to the substrate site. According to 15N heteronuclear NMR measurements, the fast motion of the pterin loop (L2) is partially dampened in the ternary complex between SaHPPK, HMDP and , -methylene adenosine 5-triphosphate (AMPCPP), but the ATP loop (L3) remains mobile on the ΞΌs timescale. In contrast, for the SaHPPK/San1/AMPCPP ternary complex, loop L2 becomes rigid on the fast timescale and loop L3 becomes more ordered which are supported by a large entropic penalty associated with San1 binding as revealed by ITC. Backbone assignments and chemical shift perturbations implicate the sulphur in San1 as a likely important loop L2/L3 stabilizing mediato

    Structure of S. aureus HPPK and the Discovery of a New Substrate Site Inhibitor

    Get PDF
    The first structural and biophysical data on the folate biosynthesis pathway enzyme and drug target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), from the pathogen Staphylococcus aureus is presented. HPPK is the second essential enzyme in the pathway catalysing the pyrophosphoryl transfer from cofactor (ATP) to the substrate (6-hydroxymethyl-7,8-dihydropterin, HMDP). In-silico screening identified 8-mercaptoguanine which was shown to bind with an equilibrium dissociation constant, Kd, of ∼13 Β΅M as measured by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). An IC50 of ∼41 Β΅M was determined by means of a luminescent kinase assay. In contrast to the biological substrate, the inhibitor has no requirement for magnesium or the ATP cofactor for competitive binding to the substrate site. The 1.65 Γ… resolution crystal structure of the inhibited complex showed that it binds in the pterin site and shares many of the key intermolecular interactions of the substrate. Chemical shift and 15N heteronuclear NMR measurements reveal that the fast motion of the pterin-binding loop (L2) is partially dampened in the SaHPPK/HMDP/Ξ±,Ξ²-methylene adenosine 5β€²-triphosphate (AMPCPP) ternary complex, but the ATP loop (L3) remains mobile on the Β΅s-ms timescale. In contrast, for the SaHPPK/8-mercaptoguanine/AMPCPP ternary complex, the loop L2 becomes rigid on the fast timescale and the L3 loop also becomes more ordered – an observation that correlates with the large entropic penalty associated with inhibitor binding as revealed by ITC. NMR data, including 15N-1H residual dipolar coupling measurements, indicate that the sulfur atom in the inhibitor is important for stabilizing and restricting important motions of the L2 and L3 catalytic loops in the inhibited ternary complex. This work describes a comprehensive analysis of a new HPPK inhibitor, and may provide a foundation for the development of novel antimicrobials targeting the folate biosynthetic pathway

    Structure and Function of Human DnaJ Homologue Subfamily A Member 1 (DNAJA1) and Its Relationship to Pancreatic Cancer

    Get PDF
    Pancreatic cancer has a dismal 5 year survival rate of 5.5% that has not been improved over the past 25 years despite an enormous amount of effort. Thus, there is an urgent need to identify truly novel yet druggable protein targets for drug discovery. The human protein DnaJ homologue subfamily A member 1 (DNAJA1) was previously shown to be downregulated 5- fold in pancreatic cancer cells and has been targeted as a biomarker for pancreatic cancer, but little is known about the specific biological function for DNAJA1 or the other members of the DnaJ family encoded in the human genome. Our results suggest the overexpression of DNAJA1 suppresses the stress response capabilities of the oncogenic transcription factor, c-Jun, and results in the diminution of cell survival. DNAJA1 likely activates a DnaK protein by forming a complex that suppresses the JNK pathway, the hyperphosphorylation of c-Jun, and the anti-apoptosis state found in pancreatic cancer cells. A high-quality nuclear magnetic resonance solution structure of the J-domain of DNAJA1 combined with a bioinformatics analysis and a ligand affinity screen identifies a potential DnaK binding site, which is also predicted to overlap with an inhibitory binding site, suggesting DNAJA1 activity is highly regulated

    PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain

    Get PDF
    Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation
    • …
    corecore