441 research outputs found

    Perturbation-based Distributed Beamforming for Wireless Relay Networks

    Full text link
    This paper deals with distributed beamforming techniques for wireless networks with half-duplex amplify-and-forward relays. Existing schemes optimize the beamforming weights based on the assumption that channel state information (CSI) is available at the relays. We propose to use adaptive beamforming based on deterministic perturbations and limited feedback (1-bit) from the destination to the relays in order to avoid CSI at the relays. Two scalable perturbation schemes are considered and practical implementation aspects are addressed. Simulation results confirm that the proposed techniques closely approach optimum performance and have satisfactory tracking properties in time-varying environments.Comment: 5 pages, 5 figures; accepted at IEEE GLOBECOM 2008, New Orleans, LA, Nov 30 - Dec 4, 200

    A scalable architecture for distributed receive beamforming: analysis and experimental demonstration

    Full text link
    We propose, analyze and demonstrate an architecture for scalable cooperative reception. In a cluster of N + 1 receive nodes, one node is designated as the final receiver, and the N other nodes act as amplify-and-forward relays which adapt their phases such that the relayed signals add up constructively at the designated receiver. This yields received SNR scaling linearly with N, while avoiding the linear increase in overhead incurred by a direct approach in which received signals are separately quantized and transmitted for centralized processing. By transforming the task of long-distance distributed receive beamforming into one of local distributed transmit beamforming, we can leverage a scalable one-bit feedback algorithm for phase synchronization. We show that time division between the long-distance and local links eliminates the need for explicit frequency synchronization. We provide an analytical framework, whose results closely match Monte Carlo simulations, to evaluate the impact of phase noise due to relaying delay on the performance of the one-bit feedback algorithm. Experimental results from our prototype implementation on software-defined radios demonstrate the expected gains in received signal strength despite significant oscillator drift, and are consistent with results from our analytical framework.Comment: submitted to IEEE Transactions on Wireless Communication

    Study of Robust Distributed Beamforming Based on Cross-Correlation and Subspace Projection Techniques

    Full text link
    In this work, we present a novel robust distributed beamforming (RDB) approach to mitigate the effects of channel errors on wireless networks equipped with relays based on the exploitation of the cross-correlation between the received data from the relays at the destination and the system output. The proposed RDB method, denoted cross-correlation and subspace projection (CCSP) RDB, considers a total relay transmit power constraint in the system and the objective of maximizing the output signal-to-interference-plus-noise ratio (SINR). The relay nodes are equipped with an amplify-and-forward (AF) protocol and we assume that the channel state information (CSI) is imperfectly known at the relays and there is no direct link between the sources and the destination. The CCSP does not require any costly optimization procedure and simulations show an excellent performance as compared to previously reported algorithms.Comment: 3 figures, 7 pages. arXiv admin note: text overlap with arXiv:1707.00953

    Study of Opportunistic Cooperation Techniques using Jamming and Relays for Physical-Layer Security in Buffer-aided Relay Networks

    Full text link
    In this paper, we investigate opportunistic relay and jammer cooperation schemes in multiple-input multiple-output (MIMO) buffer-aided relay networks. The network consists of one source, an arbitrary number of relay nodes, legitimate users and eavesdroppers, with the constraints of physical layer security. We propose an algorithm to select a set of relay nodes to enhance the legitimate users' transmission and another set of relay nodes to perform jamming of the eavesdroppers. With Inter-Relay interference (IRI) taken into account, interference cancellation can be implemented to assist the transmission of the legitimate users. Secondly, IRI can also be used to further increase the level of harm of the jamming signal to the eavesdroppers. By exploiting the fact that the jamming signal can be stored at the relay nodes, we also propose a hybrid algorithm to set a signal-to-interference and noise ratio (SINR) threshold at the node to determine the type of signal stored at the relay node. With this separation, the signals with high SINR are delivered to the users as conventional relay systems and the low SINR performance signals are stored as potential jamming signals. Simulation results show that the proposed techniques obtain a significant improvement in secrecy rate over previously reported algorithms.Comment: 8 pages, 3 figure

    Robust Cooperative Relay Beamforming

    Full text link
    In this paper, the robust distributed relay beamforming problem is solved using the worst case approach, where the problem solution has been involved because of the effect of uncertainty of channel knowledge on the quality of service (QoS) constraints. It is shown that the original robust design, which is a non-convex semi-infinite problem (SIP), can be relaxed and reformed to a semi-definite problem (SDP). Monte-Carlo simulations are presented to verify the performance improvement of our proposed robust problem over existing robust and non-robust problems in terms of transmit power and symbol error probability.Comment: IEEE Wireless Communications Letter

    Energy-Efficient Deterministic Adaptive Beamforming Algorithms for Distributed Sensor/Relay Networks

    Full text link
    In this study, energy-efficient deterministic adaptive beamforming algorithms are proposed for distributed sensor/relay networks. Specifically, DBSA, D-QESA, D-QESA-E, and a hybrid algorithm, hybrid-QESA, that combines the benefits of both deterministic and random adaptive beamforming algorithms, are proposed. Rigorous convergence analyses are provided for all our proposed algorithms and convergence to the global optimal solution is shown for all our proposed algorithms. Through extensive numerical simulations, we demonstrate that superior performance is achieved by our proposed DBSA and D-QESA over random adaptive beamforming algorithms for static channels. Surprisingly, D-QESA is also more robust against random node removal than random adaptive beamforming algorithms. For time-varying channels, hybrid-QESA indeed achieves the best performance since it combines the benefits of both types of adaptive beamforming algorithms. In summary, our proposed deterministic algorithms demonstrate superior performance both in terms of convergence time and robustness against channel and network uncertainties.Comment: Submitted for possible journal publicatio

    Multi-User Flexible Coordinated Beamforming using Lattice Reduction for Massive MIMO Systems

    Full text link
    The application of precoding algorithms in multi-user massive multiple-input multiple-output (MU-Massive-MIMO) systems is restricted by the dimensionality constraint that the number of transmit antennas has to be greater than or equal to the total number of receive antennas. In this paper, a lattice reduction (LR)-aided flexible coordinated beamforming (LR-FlexCoBF) algorithm is proposed to overcome the dimensionality constraint in overloaded MU-Massive-MIMO systems. A random user selection scheme is integrated with the proposed LR-FlexCoBF to extend its application to MU-Massive-MIMO systems with arbitary overloading levels. Simulation results show that significant improvements in terms of bit error rate (BER) and sum-rate performances can be achieved by the proposed LR-FlexCoBF precoding algorithm.Comment: 5 figures, Eusipc

    Coordinate Tomlinson-Harashima Precoding Design for Overloaded Multi-user MIMO Systems

    Full text link
    Tomlinson-Harashima precoding (THP) is a nonlinear processing technique employed at the transmit side to implement the concept of dirty paper coding (DPC). The perform of THP, however, is restricted by the dimensionality constraint that the number of transmit antennas has to be greater or equal to the total number of receive antennas. In this paper, we propose an iterative coordinate THP algorithm for the scenarios in which the total number of receive antennas is larger than the number of transmit antennas. The proposed algorithm is implemented on two types of THP structures, the decentralized THP (dTHP) with diagonal weighted filters at the receivers of the users, and the centralized THP (cTHP) with diagonal weighted filter at the transmitter. Simulation results show that a much better bit error rate (BER) and sum-rate performances can be achieved by the proposed iterative coordinate THP compared to the previous linear art.Comment: 3 figures, 6 pages, ISWCS 2014. arXiv admin note: text overlap with arXiv:1401.475

    Distributed Transmit Beamforming using Feedback Control

    Full text link
    A simple feedback control algorithm is presented for distributed beamforming in a wireless network. A network of wireless sensors that seek to cooperatively transmit a common message signal to a Base Station (BS) is considered. In this case, it is well-known that substantial energy efficiencies are possible by using distributed beamforming. The feedback algorithm is shown to achieve the carrier phase coherence required for beamforming in a scalable and distributed manner. In the proposed algorithm, each sensor independently makes a random adjustment to its carrier phase. Assuming that the BS is able to broadcast one bit of feedback each timeslot about the change in received signal to noise ratio (SNR), the sensors are able to keep the favorable phase adjustments and discard the unfavorable ones, asymptotically achieving perfect phase coherence. A novel analytical model is derived that accurately predicts the convergence rate. The analytical model is used to optimize the algorithm for fast convergence and to establish the scalability of the algorithm

    Study of Efficient Robust Adaptive Beamforming Algorithms Based on Shrinkage Techniques

    Full text link
    This paper proposes low-complexity robust adaptive beamforming (RAB) techniques based on shrinkage methods. We firstly briefly review a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is also estimated with a recursive matrix shrinkage method. Then we develop low complexity adaptive robust version of the conjugate gradient (CG) algorithm to both estimate the steering vector mismatch and update the beamforming weights. A computational complexity study of the proposed and existing algorithms is carried out. Simulations are conducted in local scattering scenarios and comparisons to existing RAB techniques are provided.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with arXiv:1505.0678
    • …
    corecore