36,031 research outputs found

    Adaptive traffic signal control using approximate dynamic programming

    Get PDF
    This paper presents a study on an adaptive traffic signal controller for real-time operation. The controller aims for three operational objectives: dynamic allocation of green time, automatic adjustment to control parameters, and fast revision of signal plans. The control algorithm is built on approximate dynamic programming (ADP). This approach substantially reduces computational burden by using an approximation to the value function of the dynamic programming and reinforcement learning to update the approximation. We investigate temporal-difference learning and perturbation learning as specific learning techniques for the ADP approach. We find in computer simulation that the ADP controllers achieve substantial reduction in vehicle delays in comparison with optimised fixed-time plans. Our results show that substantial benefits can be gained by increasing the frequency at which the signal plans are revised, which can be achieved conveniently using the ADP approach

    Oracle-Based Robust Optimization via Online Learning

    Full text link
    Robust optimization is a common framework in optimization under uncertainty when the problem parameters are not known, but it is rather known that the parameters belong to some given uncertainty set. In the robust optimization framework the problem solved is a min-max problem where a solution is judged according to its performance on the worst possible realization of the parameters. In many cases, a straightforward solution of the robust optimization problem of a certain type requires solving an optimization problem of a more complicated type, and in some cases even NP-hard. For example, solving a robust conic quadratic program, such as those arising in robust SVM, ellipsoidal uncertainty leads in general to a semidefinite program. In this paper we develop a method for approximately solving a robust optimization problem using tools from online convex optimization, where in every stage a standard (non-robust) optimization program is solved. Our algorithms find an approximate robust solution using a number of calls to an oracle that solves the original (non-robust) problem that is inversely proportional to the square of the target accuracy

    Linear Superiorization for Infeasible Linear Programming

    Full text link
    Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same feasiblity-seeking iterative process without superiorization. Using a feasibility-seeking iterative process that converges even if the linear feasible set is empty, LinSup generates an iterative sequence that converges to a point that minimizes a proximity function which measures the linear constraints violation. In addition, due to LinSup's repeated objective function reduction steps such a point will most probably have a reduced objective function value. We present an exploratory experimental result that illustrates the behavior of LinSup on an infeasible LP problem.Comment: arXiv admin note: substantial text overlap with arXiv:1612.0653
    • …
    corecore