11,585 research outputs found

    Process intensification of oxidative coupling of methane

    No full text

    Security and Privacy Problems in Voice Assistant Applications: A Survey

    Full text link
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain.Comment: 5 figure

    Learning disentangled speech representations

    Get PDF
    A variety of informational factors are contained within the speech signal and a single short recording of speech reveals much more than the spoken words. The best method to extract and represent informational factors from the speech signal ultimately depends on which informational factors are desired and how they will be used. In addition, sometimes methods will capture more than one informational factor at the same time such as speaker identity, spoken content, and speaker prosody. The goal of this dissertation is to explore different ways to deconstruct the speech signal into abstract representations that can be learned and later reused in various speech technology tasks. This task of deconstructing, also known as disentanglement, is a form of distributed representation learning. As a general approach to disentanglement, there are some guiding principles that elaborate what a learned representation should contain as well as how it should function. In particular, learned representations should contain all of the requisite information in a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be useful in downstream tasks, and independent of the task at hand. The learned representations should also be able to answer counter-factual questions. In some cases, learned speech representations can be re-assembled in different ways according to the requirements of downstream applications. For example, in a voice conversion task, the speech content is retained while the speaker identity is changed. And in a content-privacy task, some targeted content may be concealed without affecting how surrounding words sound. While there is no single-best method to disentangle all types of factors, some end-to-end approaches demonstrate a promising degree of generalization to diverse speech tasks. This thesis explores a variety of use-cases for disentangled representations including phone recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based privacy masking. Speech representations can also be utilised for automatically assessing the quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The meaning of the term "disentanglement" is not well defined in previous work, and it has acquired several meanings depending on the domain (e.g. image vs. speech). Sometimes the term "disentanglement" is used interchangeably with the term "factorization". This thesis proposes that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can be considered both theoretically and practically

    A hybrid model using data mining and multi-criteria decision-making methods for landslide risk mapping at Golestan Province, Iran

    Full text link
    The accurate modeling of landslide risk is essential pre-requisite for the development of reliable landslide control and mitigation strategies. However, landslide risk depends on the poorly known environmental and socio-economic factors for regional patterns of landslide occurrence probability and vulnerability, which constitute still a matter of research. Here, a hybrid model is described that couples data mining and multi-criteria decision-making methods for hazard and vulnerability mapping and presents its application to landslide risk assessment in Golestan Province, Northeastern Iran. To this end, landslide probability is mapped using three state-of-the-art machine learning (ML) algorithms—Maximum Entropy, Support Vector Machine and Genetic Algorithm for Rule Set Production—and combine the results with Fuzzy Analytical Hierarchy Process computations of vulnerability to obtain the landslide risk map. Based on obtained results, a discussion is presented on landslide probability as a function of the main relevant human-environmental conditioning factors in Golestan Province. In particular, from the response curves of the machine learning algorithms, it can be found that the probability p of landslide occurrence decreases nearly exponentially with the distance x to the next road, fault, or river. Specifically, the results indicated that p≈exp(−λx) where the length scale λ is about 0.0797 km−1 for road, 0.108 km−1 for fault, and 0.734 km−1 0.734 km−1 for river. Furthermore, according to the results, p follows, approximately, a lognormal function of elevation, while the equation p=p0−K(θ−θ0)2 fits well the dependence of landslide modeling on the slope-angle θ, with p0≈0.64,θ0≈25.6∘and|K|≈6.6×10−4. However, the highest predicted landslide risk levels in Golestan Province are located in the south and southwest areas surrounding Gorgan City, owing to the combined effect of dense local human occupation and strongly landslide-prone environmental conditions. Obtained results provide insights for quantitative modeling of landslide risk, as well as for priority planning in landslide risk management

    Um modelo para suporte automatizado ao reconhecimento, extração, personalização e reconstrução de gráficos estáticos

    Get PDF
    Data charts are widely used in our daily lives, being present in regular media, such as newspapers, magazines, web pages, books, and many others. A well constructed data chart leads to an intuitive understanding of its underlying data and in the same way, when data charts have wrong design choices, a redesign of these representations might be needed. However, in most cases, these charts are shown as a static image, which means that the original data are not usually available. Therefore, automatic methods could be applied to extract the underlying data from the chart images to allow these changes. The task of recognizing charts and extracting data from them is complex, largely due to the variety of chart types and their visual characteristics. Computer Vision techniques for image classification and object detection are widely used for the problem of recognizing charts, but only in images without any disturbance. Other features in real-world images that can make this task difficult are not present in most literature works, like photo distortions, noise, alignment, etc. Two computer vision techniques that can assist this task and have been little explored in this context are perspective detection and correction. These methods transform a distorted and noisy chart in a clear chart, with its type ready for data extraction or other uses. The task of reconstructing data is straightforward, as long the data is available the visualization can be reconstructed, but the scenario of reconstructing it on the same context is complex. Using a Visualization Grammar for this scenario is a key component, as these grammars usually have extensions for interaction, chart layers, and multiple views without requiring extra development effort. This work presents a model for automated support for custom recognition, and reconstruction of charts in images. The model automatically performs the process steps, such as reverse engineering, turning a static chart back into its data table for later reconstruction, while allowing the user to make modifications in case of uncertainties. This work also features a model-based architecture along with prototypes for various use cases. Validation is performed step by step, with methods inspired by the literature. This work features three use cases providing proof of concept and validation of the model. The first use case features usage of chart recognition methods focused on documents in the real-world, the second use case focus on vocalization of charts, using a visualization grammar to reconstruct a chart in audio format, and the third use case presents an Augmented Reality application that recognizes and reconstructs charts in the same context (a piece of paper) overlaying the new chart and interaction widgets. The results showed that with slight changes, chart recognition and reconstruction methods are now ready for real-world charts, when taking time, accuracy and precision into consideration.Os gráficos de dados são amplamente utilizados na nossa vida diária, estando presentes nos meios de comunicação regulares, tais como jornais, revistas, páginas web, livros, e muitos outros. Um gráfico bem construído leva a uma compreensão intuitiva dos seus dados inerentes e da mesma forma, quando os gráficos de dados têm escolhas de conceção erradas, poderá ser necessário um redesenho destas representações. Contudo, na maioria dos casos, estes gráficos são mostrados como uma imagem estática, o que significa que os dados originais não estão normalmente disponíveis. Portanto, poderiam ser aplicados métodos automáticos para extrair os dados inerentes das imagens dos gráficos, a fim de permitir estas alterações. A tarefa de reconhecer os gráficos e extrair dados dos mesmos é complexa, em grande parte devido à variedade de tipos de gráficos e às suas características visuais. As técnicas de Visão Computacional para classificação de imagens e deteção de objetos são amplamente utilizadas para o problema de reconhecimento de gráficos, mas apenas em imagens sem qualquer ruído. Outras características das imagens do mundo real que podem dificultar esta tarefa não estão presentes na maioria das obras literárias, como distorções fotográficas, ruído, alinhamento, etc. Duas técnicas de visão computacional que podem ajudar nesta tarefa e que têm sido pouco exploradas neste contexto são a deteção e correção da perspetiva. Estes métodos transformam um gráfico distorcido e ruidoso em um gráfico limpo, com o seu tipo pronto para extração de dados ou outras utilizações. A tarefa de reconstrução de dados é simples, desde que os dados estejam disponíveis a visualização pode ser reconstruída, mas o cenário de reconstrução no mesmo contexto é complexo. A utilização de uma Gramática de Visualização para este cenário é um componente chave, uma vez que estas gramáticas têm normalmente extensões para interação, camadas de gráficos, e visões múltiplas sem exigir um esforço extra de desenvolvimento. Este trabalho apresenta um modelo de suporte automatizado para o reconhecimento personalizado, e reconstrução de gráficos em imagens estáticas. O modelo executa automaticamente as etapas do processo, tais como engenharia inversa, transformando um gráfico estático novamente na sua tabela de dados para posterior reconstrução, ao mesmo tempo que permite ao utilizador fazer modificações em caso de incertezas. Este trabalho também apresenta uma arquitetura baseada em modelos, juntamente com protótipos para vários casos de utilização. A validação é efetuada passo a passo, com métodos inspirados na literatura. Este trabalho apresenta três casos de uso, fornecendo prova de conceito e validação do modelo. O primeiro caso de uso apresenta a utilização de métodos de reconhecimento de gráficos focando em documentos no mundo real, o segundo caso de uso centra-se na vocalização de gráficos, utilizando uma gramática de visualização para reconstruir um gráfico em formato áudio, e o terceiro caso de uso apresenta uma aplicação de Realidade Aumentada que reconhece e reconstrói gráficos no mesmo contexto (um pedaço de papel) sobrepondo os novos gráficos e widgets de interação. Os resultados mostraram que com pequenas alterações, os métodos de reconhecimento e reconstrução dos gráficos estão agora prontos para os gráficos do mundo real, tendo em consideração o tempo, a acurácia e a precisão.Programa Doutoral em Engenharia Informátic

    Statistical Learning for Gene Expression Biomarker Detection in Neurodegenerative Diseases

    Get PDF
    In this work, statistical learning approaches are used to detect biomarkers for neurodegenerative diseases (NDs). NDs are becoming increasingly prevalent as populations age, making understanding of disease and identification of biomarkers progressively important for facilitating early diagnosis and the screening of individuals for clinical trials. Advancements in gene expression profiling has enabled the exploration of disease biomarkers at an unprecedented scale. The work presented here demonstrates the value of gene expression data in understanding the underlying processes and detection of biomarkers of NDs. The value of novel approaches to previously collected -omics data is shown and it is demonstrated that new therapeutic targets can be identified. Additionally, the importance of meta-analysis to improve power of multiple small studies is demonstrated. The value of blood transcriptomics data is shown in applications to researching NDs to understand underlying processes using network analysis and a novel hub detection method. Finally, after demonstrating the value of blood gene expression data for investigating NDs, a combination of feature selection and classification algorithms were used to identify novel accurate biomarker signatures for the diagnosis and prognosis of Parkinson’s disease (PD) and Alzheimer’s disease (AD). Additionally, the use of feature pools based on previous knowledge of disease and the viability of neural networks in dimensionality reduction and biomarker detection is demonstrated and discussed. In summary, gene expression data is shown to be valuable for the investigation of ND and novel gene biomarker signatures for the diagnosis and prognosis of PD and AD

    The Role of Transient Vibration of the Skull on Concussion

    Get PDF
    Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to reflect the wave or cushion its force. To date, there is few researches investigating the effect of transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain better understanding of the role of transient vibration of the skull on concussion. This goal will be achieved by addressing three research objectives. First, a MRI skull and brain segmentation automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI scans struggle with differentiating bone tissue from other structures. One of the most important components for a successful segmentation is high-quality ground truth labels. Therefore, we introduce a deep learning framework for skull segmentation purpose where the ground truth labels are created from CT imaging using the standard tessellation language (STL). Furthermore, the brain region will be important for a future work, thus, we explore a new initialization concept of the convolutional neural network (CNN) by orthogonal moments to improve brain segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align the Facial Skeleton is introduced. An important aspect for further impact analysis is the ability to precisely simulate the same point of impact on multiple bone models. To perform this task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce a 2D/3D technique to align the facial skeleton that was initially developed for automatically calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using cephalometric landmarks and manual image grid alignment to construct the training dataset was introduced. Then, this concept was extended to a 3D version where coronal and transverse planes are aligned using CNN approach. As the alignment in the sagittal plane is still undefined, a new alignment based on these techniques will be created to align the sagittal plane using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are assessed to determine how the skull resonant frequency vibrations propagate into the brain tissue. After applying material properties and mesh to the skull, modal analysis is performed to assess the skull natural frequencies. Finally, theories will be raised regarding the relation between the skull geometry, such as shape and thickness, and vibration with brain tissue injury, which may result in concussive injury

    Robustness against adversarial attacks on deep neural networks

    Get PDF
    While deep neural networks have been successfully applied in several different domains, they exhibit vulnerabilities to artificially-crafted perturbations in data. Moreover, these perturbations have been shown to be transferable across different networks where the same perturbations can be transferred between different models. In response to this problem, many robust learning approaches have emerged. Adversarial training is regarded as a mainstream approach to enhance the robustness of deep neural networks with respect to norm-constrained perturbations. However, adversarial training requires a large number of perturbed examples (e.g., over 100,000 examples are required for MNIST dataset) trained on the deep neural networks before robustness can be considerably enhanced. This is problematic due to the large computational cost of obtaining attacks. Developing computationally effective approaches while retaining robustness against norm-constrained perturbations remains a challenge in the literature. In this research we present two novel robust training algorithms based on Monte-Carlo Tree Search (MCTS) [1] to enhance robustness under norm-constrained perturbations [2, 3]. The first algorithm searches potential candidates with Scale Invariant Feature Transform method and makes decisions with Monte-Carlo Tree Search method [2]. The second algorithm adopts Decision Tree Search method (DTS) to accelerate the search process while maintaining efficiency [3]. Our overarching objective is to provide computationally effective approaches that can be deployed to train deep neural networks robust against perturbations in data. We illustrate the robustness with these algorithms by studying the resistances to adversarial examples obtained in the context of the MNIST and CIFAR10 datasets. For MNIST, the results showed an average training efforts saving of 21.1\% when compared to Projected Gradient Descent (PGD) and 28.3\% when compared to Fast Gradient Sign Methods (FGSM). For CIFAR10, we obtained an average improvement of efficiency of 9.8\% compared to PGD and 13.8\% compared to FGSM. The results suggest that these two methods here introduced are not only robust to norm-constrained perturbations but also efficient during training. In regards to transferability of defences, our experiments [4] reveal that across different network architectures, across a variety of attack methods from white-box to black-box and across various datasets including MNIST and CIFAR10, our algorithms outperform other state-of-the-art methods, e.g., PGD and FGSM. Furthermore, the derived attacks and robust models obtained on our framework are reusable in the sense that the same norm-constrained perturbations can facilitate robust training across different networks. Lastly, we investigate the robustness of intra-technique and cross-technique transferability and the relations with different impact factors from adversarial strength to network capacity. The results suggest that known attacks on the resulting models are less transferable than those models trained by other state-of-the-art attack algorithms. Our results suggest that exploiting these tree search frameworks can result in significant improvements in the robustness of deep neural networks while saving computational cost on robust training. This paves the way for several future directions, both algorithmic and theoretical, as well as numerous applications to establish the robustness of deep neural networks with increasing trust and safety.Open Acces

    Response of saline reservoir to different phaseCOâ‚‚-brine: experimental tests and image-based modelling

    Get PDF
    Geological CO₂ storage in saline rocks is a promising method for meeting the target of net zero emission and minimizing the anthropogenic CO₂ emitted into the earth’s atmosphere. Storage of CO₂ in saline rocks triggers CO₂-brine-rock interaction that alters the properties of the rock. Properties of rocks are very crucial for the integrity and efficiency of the storage process. Changes in properties of the reservoir rocks due to CO₂-brine-rock interaction must be well predicted, as some changes can reduce the storage integrity of the reservoir. Considering the thermodynamics, phase behavior, solubility of CO₂ in brine, and the variable pressure-temperature conditions of the reservoir, there will be undissolved CO₂ in a CO₂ storage reservoir alongside the brine for a long time, and there is a potential for phase evolution of the undissolved CO₂. The phase of CO₂ influence the CO₂-brine-rock interaction, different phaseCO₂-brine have a unique effect on the properties of the reservoir rocks, Therefore, this study evaluates the effect of four different phaseCO₂-brine reservoir states on the properties of reservoir rocks using experimental and image-based approach. Samples were saturated with the different phaseCO₂-brine, then subjected to reservoir conditions in a triaxial compression test. The representative element volume (REV)/representative element area (REA) for the rock samples was determined from processed digital images, and rock properties were evaluated using digital rock physics and rock image analysis techniques. This research has evaluated the effect of different phaseCO₂-brine on deformation rate and deformation behavior, bulk modulus, compressibility, strength, and stiffness as well as porosity and permeability of sample reservoir rocks. Changes in pore geometry properties, porosity, and permeability of the rocks in CO₂ storage conditions with different phaseCO₂-brine have been evaluated using digital rock physics techniques. Microscopic rock image analysis has been applied to provide evidence of changes in micro-fabric, the topology of minerals, and elemental composition of minerals in saline rocks resulting from different phaseCO₂-br that can exist in a saline CO₂ storage reservoir. It was seen that the properties of the reservoir that are most affected by the scCO₂-br state of the reservoir include secondary fatigue rate, bulk modulus, shear strength, change in the topology of minerals after saturation as well as change in shape and flatness of pore surfaces. The properties of the reservoir that is most affected by the gCO₂-br state of the reservoir include primary fatigue rate, change in permeability due to stress, change in porosity due to stress, and change topology of minerals due to stress. For all samples, the roundness and smoothness of grains as well as smoothness of pores increased after compression while the roundness of pores decreased. Change in elemental composition in rock minerals in CO₂-brine-rock interaction was seen to depend on the reactivity of the mineral with CO₂ and/or brine and the presence of brine accelerates such change. Carbon, oxygen, and silicon can be used as index minerals for elemental changes in a CO₂-brine-rock system. The result of this work can be applied to predicting the effect the different possible phases of CO₂ will have on the deformation, geomechanics indices, and storage integrity of giant CO₂ storage fields such as Sleipner, In Salah, etc
    • …
    corecore