10 research outputs found

    Perturbation of error bounds

    No full text
    Our aim in the current article is to extend the developments in Kruger, Ngai & Théra , SIAM J. Optim. 20(6), 3280–3296 (2010) and, more precisely, to characterize , in the Banach space setting, the stability of the local and global error bound property of inequalities determined by proper lower semicontinuous under data perturbations. We propose new concepts of (arbitrary, convex and linear) perturbations of the given function defining the system under consideration, which turn out to be a useful tool in our analysis. The characterizations of error bounds for families of perturbations can be interpreted as estimates of the 'radius of error bounds'. The definitions and characterizations are illustrated by examples

    Perturbation of error bounds

    Get PDF
    Our aim in the current article is to extend the developments in Kruger et al. (SIAM J Optim 20(6):3280–3296, 2010. doi: 10.1137/100782206) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by lower semicontinuous functions under data perturbations. We propose new concepts of (arbitrary, convex and linear) perturbations of the given function defining the system under consideration, which turn out to be a useful tool in our analysis. The characterizations of error bounds for families of perturbations can be interpreted as estimates of the ‘radius of error bounds’. The definitions and characterizations are illustrated by examples.The research is supported by the Australian Research Council: project DP160100854; EDF and the Jacques Hadamard Mathematical Foundation: Gaspard Monge Program for Optimization and Operations Research. The research of the second and third authors is also supported by MINECO of Spain and FEDER of EU: Grant MTM2014-59179-C2-1-P

    About regularity properties in variational analysis and applications in optimization

    Get PDF
    Regularity properties lie at the core of variational analysis because of their importance for stability analysis of optimization and variational problems, constraint qualications, qualication conditions in coderivative and subdierential calculus and convergence analysis of numerical algorithms. The thesis is devoted to investigation of several research questions related to regularity properties in variational analysis and their applications in convergence analysis and optimization. Following the works by Kruger, we examine several useful regularity properties of collections of sets in both linear and Holder-type settings and establish their characterizations and relationships to regularity properties of set-valued mappings. Following the recent publications by Lewis, Luke, Malick (2009), Drusvyatskiy, Ioe, Lewis (2014) and some others, we study application of the uniform regularity and related properties of collections of sets to alternating projections for solving nonconvex feasibility problems and compare existing results on this topic. Motivated by Ioe (2000) and his subsequent publications, we use the classical iteration scheme going back to Banach, Schauder, Lyusternik and Graves to establish criteria for regularity properties of set-valued mappings and compare this approach with the one based on the Ekeland variational principle. Finally, following the recent works by Khanh et al. on stability analysis for optimization related problems, we investigate calmness of set-valued solution mappings of variational problems.Doctor of Philosoph

    Nondifferentiable Optimization: Motivations and Applications

    Get PDF
    IIASA has been involved in research on nondifferentiable optimization since 1976. The Institute's research in this field has been very productive, leading to many important theoretical, algorithmic and applied results. Nondifferentiable optimization has now become a recognized and rapidly developing branch of mathematical programming. To continue this tradition and to review developments in this field IIASA held this Workshop in Sopron (Hungary) in September 1984. This volume contains selected papers presented at the Workshop. It is divided into four sections dealing with the following topics: (I) Concepts in Nonsmooth Analysis; (II) Multicriteria Optimization and Control Theory; (III) Algorithms and Optimization Methods; (IV) Stochastic Programming and Applications

    Bilevel programming: reformulations, regularity, and stationarity

    Get PDF
    We have considered the bilevel programming problem in the case where the lower-level problem admits more than one optimal solution. It is well-known in the literature that in such a situation, the problem is ill-posed from the view point of scalar objective optimization. Thus the optimistic and pessimistic approaches have been suggested earlier in the literature to deal with it in this case. In the thesis, we have developed a unified approach to derive necessary optimality conditions for both the optimistic and pessimistic bilevel programs, which is based on advanced tools from variational analysis. We have obtained various constraint qualifications and stationarity conditions depending on some constructive representations of the solution set-valued mapping of the follower’s problem. In the auxiliary developments, we have provided rules for the generalized differentiation and robust Lipschitzian properties for the lower-level solution setvalued map, which are of a fundamental interest for other areas of nonlinear and nonsmooth optimization. Some of the results of the aforementioned theory have then been applied to derive stationarity conditions for some well-known transportation problems having the bilevel structure

    Introduction to Nonsmooth Analysis and Optimization

    Full text link
    This book aims to give an introduction to generalized derivative concepts useful in deriving necessary optimality conditions and numerical algorithms for infinite-dimensional nondifferentiable optimization problems that arise in inverse problems, imaging, and PDE-constrained optimization. They cover convex subdifferentials, Fenchel duality, monotone operators and resolvents, Moreau--Yosida regularization as well as Clarke and (briefly) limiting subdifferentials. Both first-order (proximal point and splitting) methods and second-order (semismooth Newton) methods are treated. In addition, differentiation of set-valued mapping is discussed and used for deriving second-order optimality conditions for as well as Lipschitz stability properties of minimizers. The required background from functional analysis and calculus of variations is also briefly summarized.Comment: arXiv admin note: substantial text overlap with arXiv:1708.0418
    corecore