39,884 research outputs found

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Modeling Quantum Optical Components, Pulses and Fiber Channels Using OMNeT++

    Full text link
    Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of quantum mechanics to generate and distribute unconditionally secure cryptographic keys. While QKD offers the promise of unconditionally secure key distribution, real world systems are built from non-ideal components which necessitates the need to model and understand the impact these non-idealities have on system performance and security. OMNeT++ has been used as a basis to develop a simulation framework to support this endeavor. This framework, referred to as "qkdX" extends OMNeT++'s module and message abstractions to efficiently model optical components, optical pulses, operating protocols and processes. This paper presents the design of this framework including how OMNeT++'s abstractions have been utilized to model quantum optical components, optical pulses, fiber and free space channels. Furthermore, from our toolbox of created components, we present various notional and real QKD systems, which have been studied and analyzed.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche (Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich, Switzerland, September 3-4, 201

    A road towards the photonic hardware implementation of artificial cognitive circuits

    Get PDF
    Many technologies we use are inspired by nature. This happens in different domains, ranging from mechanics to optics to computer sciences. Nature has incredible potentialities that man still does not know or that he striving to learn through experience. These potentialities concern the ability to solve complex problems through approaches of various types of distributed intelligence. In fact, there are forms of intelligence in nature that differ from that of man, but are nevertheless exceedingly efficient. Man has often used as a model those forms of distributed intelligence that allow colonies of animals to develop places of housing or collective behaviors of extreme complexity. Recently, M. Alonzo et alii (Sci.Rep. 8, 5716 (2018)) published a hardware implementation to solve complex routing problems in modern information networks by exploiting the immense possibilities offered by light. This article presents an addressable photonic circuit based on the decision-making processes of ant colonies looking for food. When ants search for food, they modify their surroundings by leaving traces of pheromone, which may be reinforced and function as a type of path marker for when food has been found. This process is based on stigmergy, or the modification of the environment to implement distributed decision-making processes. The photonic hardware implementation that this work proposes is a photonic X-junction that simulates this stigmergic procedure. The experimental implementation is based on the use of non-linear substrates, i.e. materials that can be modified by light, simulating the modification induced by the ants on the surrounding environment when they leave the pheromone traces. Here, two laser beams generate two crossing channels in which the index of refraction is increased with respect to the whole substrate. These channels act as integrated waveguides (almost self-written optical fibers) within which optical information can be propagated (as happens for the ants that follow traces of pheromone already “written”). The proposed device is a X-junction with two crossing waveguides, whose refractive index contrast is defined by the intensities of the writing light beams. The higher the writing intensity, the greater the induced index variation, as if it were an increasingly intense pheromone trace. The information will follow the most contrasted harm of the junction, which is driven and eventually switched by the writing light intensity. Any optical information that will be sent to the device will follow the most intense trace, i.e. the most contrasted waveguide. The paper demonstrates a device that can be wholly operated using the light and that can be the basis of complex hardware configurations that might reproduce the stigmergic distributed intelligence. This is a highly significant innovation in the field of electronic and photonic technologies, within which artificial cognition and decision processes are implemented into a hardware circuit and not in a software code

    Programming multi-level quantum gates in disordered computing reservoirs via machine learning and TensorFlow

    Get PDF
    Novel machine learning computational tools open new perspectives for quantum information systems. Here we adopt the open-source programming library TensorFlow to design multi-level quantum gates including a computing reservoir represented by a random unitary matrix. In optics, the reservoir is a disordered medium or a multi-modal fiber. We show that trainable operators at the input and the readout enable one to realize multi-level gates. We study various qudit gates, including the scaling properties of the algorithms with the size of the reservoir. Despite an initial low slop learning stage, TensorFlow turns out to be an extremely versatile resource for designing gates with complex media, including different models that use spatial light modulators with quantized modulation levels.Comment: Added a new section and a new figure about implementation of the gates by a single spatial light modulator. 9 pages and 4 figure
    corecore