3,015 research outputs found

    Comparative Analysis of Peak Correlation Characteristics of Non-Orthogonal Spreading Codes for Wireless Systems

    Full text link
    The performance of a CDMA based wireless system is largely dependent on the characteristics of pseudo-random spreading codes. The spreading codes should be carefully chosen to ensure highest possible peak value of auto-correlation function and lower correlation peaks (side-lobes) at non-zero time-shifts. Simultaneously, zero cross-correlation value at all time shifts is required in order to eliminate the effect of multiple access interference at the receiver. But no such code family exists which possess both characteristics simultaneously. That's why an exhaustive effort has been made in this paper to evaluate the peak correlation characteristics of various non-orthogonal spreading codes and suggest a suitable solution.Comment: 12 Pages, 8 Figures, 3 Table

    Congestion probabilities in CDMA-based networks supporting batched Poisson traffic

    Get PDF
    We propose a new multirate teletraffic loss model for the calculation of time and call congestion probabilities in CDMA-based networks that accommodate calls of different serviceclasses whose arrival follows a batched Poisson process. The latter is more "peaked" and "bursty" than the ordinary Poisson process. The acceptance of calls in the system is based on the partial batch blocking discipline. This policy accepts a part of the batch (one or more calls) and discards the rest if the available resources are not enough to accept the whole batch. The proposed model takes into account the multiple access interference, the notion of local (soft) blocking, user’s activity and the interference cancellation. Although the analysis of the model does not lead to a product form solution of the steady state probabilities, we show that the calculation of the call-level performance metrics, time and call congestion probabilities, can be based on approximate but recursive formulas. The accuracy of the proposed formulas are verified through simulation and found to be quite satisfactory

    Communication Standards Adoption in Developing Economies: Issues and Options for India

    Get PDF
    Given the importance of communications in todays world, its spread in developing economies is critical for their development. Emergence of standards reduces market and technological uncertainty and lays the foundation for market creation and enhances the diffusion of communication technologies partly through the advantages associated with network and scale economies. Standardisation has also become important with the rise in cross-fertilisation between information technology (IT) and other technologies, especially in communications. Under these circumstances, strategic implications of IT standardisation are huge because standards can determine the growth potential of individual firms, affect the competitive advantage of nations and even development of technologies and their diffusion. Policies for standards adoption have been used world-wide to facilitate the diffusion of communications technologies, acquire a larger market share of the global telecom market, build technological capabilities. The paper reviews various approaches to communications standard adoption as well as the experiences of other countries. These approaches and experiences and the associated market and regulatory failures are evaluated in the context of the current Indian situation. This evaluation suggests that a standards neutral policy is desirable for India.

    The interplay between standardization and technological change: A study on wireless technologies, technological trajectories, and essential patent claims

    Get PDF
    In many technology fields, standardization is the primary method of achieving alignment between actors. Especially if strong network effects and increasing returns are present, the market often ends up with a single standard that dominates the technical direction, activities and search heuristics, for at least one full technology generation. Although literature has addressed such decision processes quite extensively, relatively little attention has been paid to the way in which standards affect - and are affected by - technological change. Building upon the concepts of technological regimes and trajectories (Dosi, 1982), and on the methodology proposed by (Hummon & Doreian, 1989) to empirically investigate such trajectories, this papers aims to study the interplay between standardisation and technological change. We conclude that the empirically derived technological trajectories very well match the standardisation activities and the main technological challenges derived from the engineering literature. Moreover, we also observe that the Hummon & Doreian methodology can indeed reveal technological discontinuities. To the best of our knowledge, this has not been the case in earlier studies using this technology, and refutes concerns that this methodology has a (too) strong bias towards incremental, continuous technological paths. Finally, we compare the set of patents in the most important technological trajectories to the set of so-called essential patent claims at standards bodies, and conclude that there is no significant relationship. This confirms earlier arguments that essential patents are not necessarily ‘important’ patents in a technical sense.technological trajectories, standardization, innovation

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • 

    corecore