6 research outputs found

    Systematic review on which analytics and learning methodologies are applied in primary and secondary education in the learning of robotics sensors

    Full text link
    Robotics technology has become increasingly common both for businesses and for private citizens. Primary and secondary schools, as a mirror of societal evolution, have increasingly integrated science, technology, engineering and math concepts into their curricula. Our research questions are: “In teaching robotics to primary and secondary school students, which pedagogical-methodological interventions result in better understanding and knowledge in the use of sensors in educational robotics?”, and “In teaching robotics to primary and secondary school students, which analytical methods related to Learning Analytics processes are proposed to analyze and reflect on students’ behavior in their learning of concepts and skills of sensors in educational robotics?”. To answer these questions, we have carried out a systematic review of the literature in the Web of Science and Scopus databases regarding robotics sensors in primary and secondary education, and Learning Analytics processes. We applied PRISMA methodology and reviewed a total of 24 articles. The results show a consensus about the use of the Learning by Doing and Project-Based Learning methodologies, including their different variations, as the most common methodology for achieving optimal engagement, motivation and performance in students’ learning. Finally, future lines of research are identified from this study.This research was co-funded by the support of the Secretaria d’Universitats i Recerca of the Department of Business and Knowledge of the Generalitat de Catalunya with the help of 2017 SGR 93

    AI literacy in K‑12: a systematic literature review

    Get PDF
    The successful irruption of AI-based technology in our daily lives has led to a growing educational, social, and political interest in training citizens in AI. Education systems now need to train students at the K-12 level to live in a society where they must interact with AI. Thus, AI literacy is a pedagogical and cognitive challenge at the K-12 level. This study aimed to understand how AI is being integrated into K-12 education worldwide. We conducted a search process following the systematic literature review method using Scopus. 179 documents were reviewed, and two broad groups of AI literacy approaches were identified, namely learning experience and theoretical perspective. The first group covered experiences in learning technical, conceptual and applied skills in a particular domain of interest. The second group revealed that significant efforts are being made to design models that frame AI literacy proposals. There were hardly any experiences that assessed whether students understood AI concepts after the learning experience. Little attention has been paid to the undesirable consequences of an indiscriminate and insufficiently thought-out application of AI. A competency framework is required to guide the didactic proposals designed by educational institutions and define a curriculum reflecting the sequence and academic continuity, which should be modular, personalized and adjusted to the conditions of the schools. Finally, AI literacy can be leveraged to enhance the learning of disciplinary core subjects by integrating AI into the teaching process of those subjects, provided the curriculum is co-designed with teachersThis work has partially been funded by the Spanish Ministry of Science, Innovation and Universities (PID2021-123152OB-C21), and the Consellería de Educación, Universidade e Formación Profesional (accreditation 2019–2022 ED431C2022/19 and reference competitive group, ED431G2019/04) and the European Regional Development Fund (ERDF), which acknowledges the CiTIUS— Centro Singular de Investigación en Tecnoloxías Intelixentes da Universidade de Santiago de Compostela as a Research Center of the Galician University System. This work also received support from the Educational Knowledge Transfer (EKT), the Erasmus + project (reference number 612414-EPP-1-2019-1- ES-EPPKA2-KA) and the Knowledge Alliances call (Call EAC/A03/2018)S

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse
    corecore