209 research outputs found

    Signed Distance-based Deep Memory Recommender

    Full text link
    Personalized recommendation algorithms learn a user's preference for an item by measuring a distance/similarity between them. However, some of the existing recommendation models (e.g., matrix factorization) assume a linear relationship between the user and item. This approach limits the capacity of recommender systems, since the interactions between users and items in real-world applications are much more complex than the linear relationship. To overcome this limitation, in this paper, we design and propose a deep learning framework called Signed Distance-based Deep Memory Recommender, which captures non-linear relationships between users and items explicitly and implicitly, and work well in both general recommendation task and shopping basket-based recommendation task. Through an extensive empirical study on six real-world datasets in the two recommendation tasks, our proposed approach achieved significant improvement over ten state-of-the-art recommendation models

    Dual-Ganularity Contrastive Learning for Session-based Recommendation

    Full text link
    Session-based recommendation systems(SBRS) are more suitable for the current e-commerce and streaming media recommendation scenarios and thus have become a hot topic. The data encountered by SBRS is typically highly sparse, which also serves as one of the bottlenecks limiting the accuracy of recommendations. So Contrastive Learning(CL) is applied in SBRS owing to its capability of improving embedding learning under the condition of sparse data. However, existing CL strategies are limited in their ability to enforce finer-grained (e.g., factor-level) comparisons and, as a result, are unable to capture subtle differences between instances. More than that, these strategies usually use item or segment dropout as a means of data augmentation which may result in sparser data and thus ineffective self-supervised signals. By addressing the two aforementioned limitations, we introduce a novel multi-granularity CL framework. Specifically, two extra augmented embedding convolution channels with different granularities are constructed and the embeddings learned by them are compared with those learned from original view to complete the CL tasks. At factor-level, we employ Disentangled Representation Learning to obtain finer-grained data(e.g. factor-level embeddings), with which we can construct factor-level convolution channels. At item-level, the star graph is deployed as the augmented data and graph convolution on it can ensure the effectiveness of self-supervised signals. Compare the learned embeddings of these two views with the learned embeddings of the basic view to achieve CL at two granularities. Finally, the more precise item-level and factor-level embeddings obtained are referenced to generate personalized recommendations for the user. The proposed model is validated through extensive experiments on two benchmark datasets, showcasing superior performance compared to existing methods

    Automated Prompting for Non-overlapping Cross-domain Sequential Recommendation

    Full text link
    Cross-domain Recommendation (CR) has been extensively studied in recent years to alleviate the data sparsity issue in recommender systems by utilizing different domain information. In this work, we focus on the more general Non-overlapping Cross-domain Sequential Recommendation (NCSR) scenario. NCSR is challenging because there are no overlapped entities (e.g., users and items) between domains, and there is only users' implicit feedback and no content information. Previous CR methods cannot solve NCSR well, since (1) they either need extra content to align domains or need explicit domain alignment constraints to reduce the domain discrepancy from domain-invariant features, (2) they pay more attention to users' explicit feedback (i.e., users' rating data) and cannot well capture their sequential interaction patterns, (3) they usually do a single-target cross-domain recommendation task and seldom investigate the dual-target ones. Considering the above challenges, we propose Prompt Learning-based Cross-domain Recommender (PLCR), an automated prompting-based recommendation framework for the NCSR task. Specifically, to address the challenge (1), PLCR resorts to learning domain-invariant and domain-specific representations via its prompt learning component, where the domain alignment constraint is discarded. For challenges (2) and (3), PLCR introduces a pre-trained sequence encoder to learn users' sequential interaction patterns, and conducts a dual-learning target with a separation constraint to enhance recommendations in both domains. Our empirical study on two sub-collections of Amazon demonstrates the advance of PLCR compared with some related SOTA methods

    Equivariant Contrastive Learning for Sequential Recommendation

    Full text link
    Contrastive learning (CL) benefits the training of sequential recommendation models with informative self-supervision signals. Existing solutions apply general sequential data augmentation strategies to generate positive pairs and encourage their representations to be invariant. However, due to the inherent properties of user behavior sequences, some augmentation strategies, such as item substitution, can lead to changes in user intent. Learning indiscriminately invariant representations for all augmentation strategies might be suboptimal. Therefore, we propose Equivariant Contrastive Learning for Sequential Recommendation (ECL-SR), which endows SR models with great discriminative power, making the learned user behavior representations sensitive to invasive augmentations (e.g., item substitution) and insensitive to mild augmentations (e.g., featurelevel dropout masking). In detail, we use the conditional discriminator to capture differences in behavior due to item substitution, which encourages the user behavior encoder to be equivariant to invasive augmentations. Comprehensive experiments on four benchmark datasets show that the proposed ECL-SR framework achieves competitive performance compared to state-of-the-art SR models. The source code is available at https://github.com/Tokkiu/ECL.Comment: Accepted by RecSys 202
    • …
    corecore